U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Research at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) on Transition Metal Oxides Contributes to Greater Understanding of Mineral Surface Interactions with Contaminants.
Published: February 28, 2001
Posted: August 03, 2001

For the first time, EMSL scientist Scott Chambers and postdoctoral associate Tim Droubay have determined the difference in electron energy levels (crystal field splitting) at the surface of three well-defined single crystals of different iron oxides: I-Fe2O3(0001), y-Fe2O3(001), and Fe3O4(001). Until this work, the actual energy difference at the surface of any transition metal oxide was not known. Knowing the differences between surface and bulk crystal field strength is important for obtaining a fundamental understanding of the reactivity of oxide and mineral surfaces. In turn, this fundamental understanding of specific mineral surface-site reactivities substantially improves reactive transport models of contaminants in geologic systems, and allows more effective remediation schemes to be devised. The EMSL molecular beam epitaxy (MBE) system was used to prepare the crystals, and high-energy-resolution x-ray photoemission, synchrotron radiation x-ray absorption spectroscopy, and first-principles atomic multiplet theory were used to analyze the samples. This work was funded by EMSP and will be submitted for publication in Physical Review B.

Contact: Paul Bayer, SC-74, 3-5324
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)

Division: SC-23.1 Climate and Environmental Sciences Division, BER
      (formerly SC-74 Environmental Sciences Division, OBER)


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)