BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Key Ethanol Tolerance Gene Identified in Biomass-Degrading Bacteria
Published: August 08, 2011
Posted: August 31, 2011

If a single organism could breakdown cellulosic biomass and synthesize biofuels, a process known as consolidated bioprocessing, it could significantly increase the efficiency and reduce the costs of biofuel production. Some biomass-degrading microbes such as Clostridium thermocellum can also synthesize ethanol, but they are poisoned by relatively low ethanol concentrations compared to sugar fermenters such as yeast or E. coli. Researchers at the DOE Bioenergy Science Center (BESC) have now identified a key gene in C. thermocellum that is related to enhanced ethanol tolerance. The team analyzed genomes of C. thermocellum mutants that could tolerate higher than normal ethanol concentrations, and found a consistently modified gene involved in alcohol metabolism. By analyzing the structure of the encoded protein, it was determined that the mutation causes significant alterations to central ethanol metabolism. The identification of this gene will enable more targeted metabolic engineering approaches to improve production of ethanol and other biofuels in C. thermocellum and other biomass-degrading microbes useful for consolidated bioprocessing.

Reference: Brown, S. D., A. M. Guss, T. V. Karpinets, J. M. Parks, N. Smolin, S. Yang, M. L. Land, D. M. Klingeman, A. Bhandiwad, M. Rodriguez, Jr., B. Raman, X. Shao, J. R. Mielenz, J. C. Smith, M. Keller, and L. R. Lynd. 2011. "Mutant Alcohol Dehydrogenase Leads to Improved Ethanol Tolerance in Clostridium thermocellum," Proceedings of the National Academy of Sciences of the United States of America 108, 13752-57. (Reference link)

Contact: Joseph Graber, SC-23.2, (301) 903-1239
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Biosystems Design

Division: SC-33.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)