U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Conifer-Rotting Fungus Offers Potential New Strategy for Lignocellulose Degradation
Published: August 05, 2011
Posted: August 23, 2011

Due to its abundance and high cellulose content, wood has great potential as raw material for the production of biofuels. However, wood also contains lignin, a hard-to-degrade polymer that poses a major obstacle to converting its cellulose into liquid fuels. White rot fungi have evolved mechanisms to digest lignin and cellulose, and scientists are trying to take advantage of these capabilities. Now, new research using genome sequencing and comparative analysis of the brown rot fungus Serpula lacrymans has discovered a different strategy used by this boreal forest fungus to extract the energy-rich cellulose from conifer wood. A comparison of the gene content in white and brown rot fungi indicates that the enzymatic machinery to degrade lignin has been eliminated in brown rot fungi, enabling it to specifically target cellulose, separating it from the recalcitrant lignin. The researchers also discovered that in the presence of wood, S. lacrymans produces variegatic acid, a phenolate compound that helps in reducing iron ions to Fe+2, which are required for the initial non-enzymatic steps in cellulose degradation upon wood colonization by the fungus. These insights provide researchers with new strategies to potentially bypass the problem of eliminating lignin from renewable woody feedstocks for transportation fuel production. The research has just been published in Science and was carried out by an international consortium including researchers at DOE's Joint Genome Institute in Walnut Creek, CA, and its partners HudsonAlpha Institute for Biotechnology (Huntsville, AL) and Pacific Northwest National Lab (Richland, WA).

Reference: D. C. Eastwood, et al. 2011. "The Plant Cell Wall-Decomposing Machinery Underlies the Functional Diversity of Forest Fungi", Science, 333, 762-65. DOI:10.1126/science.1205411. (Reference link)

Contact: Pablo Rabinowicz, SC-23.2 (301) 903-0379
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: DOE Joint Genome Institute (JGI)
  • Research Area: Sustainable Biofuels and Bioproducts

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)