U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Conifer-Rotting Fungus Offers Potential New Strategy for Lignocellulose Degradation
Published: August 05, 2011
Posted: August 23, 2011

Due to its abundance and high cellulose content, wood has great potential as raw material for the production of biofuels. However, wood also contains lignin, a hard-to-degrade polymer that poses a major obstacle to converting its cellulose into liquid fuels. White rot fungi have evolved mechanisms to digest lignin and cellulose, and scientists are trying to take advantage of these capabilities. Now, new research using genome sequencing and comparative analysis of the brown rot fungus Serpula lacrymans has discovered a different strategy used by this boreal forest fungus to extract the energy-rich cellulose from conifer wood. A comparison of the gene content in white and brown rot fungi indicates that the enzymatic machinery to degrade lignin has been eliminated in brown rot fungi, enabling it to specifically target cellulose, separating it from the recalcitrant lignin. The researchers also discovered that in the presence of wood, S. lacrymans produces variegatic acid, a phenolate compound that helps in reducing iron ions to Fe+2, which are required for the initial non-enzymatic steps in cellulose degradation upon wood colonization by the fungus. These insights provide researchers with new strategies to potentially bypass the problem of eliminating lignin from renewable woody feedstocks for transportation fuel production. The research has just been published in Science and was carried out by an international consortium including researchers at DOE's Joint Genome Institute in Walnut Creek, CA, and its partners HudsonAlpha Institute for Biotechnology (Huntsville, AL) and Pacific Northwest National Lab (Richland, WA).

Reference: D. C. Eastwood, et al. 2011. "The Plant Cell Wall-Decomposing Machinery Underlies the Functional Diversity of Forest Fungi", Science, 333, 762-65. DOI:10.1126/science.1205411. (Reference link)

Contact: Pablo Rabinowicz, SC-23.2 (301) 903-0379
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: DOE Joint Genome Institute (JGI)
  • Research Area: Sustainable Biofuels and Bioproducts

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)