U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Improved Ice Particle Measurements
Published: July 05, 2011
Posted: August 23, 2011

Understanding the formation and evolution of small ice particles in clouds has been a long-standing issue in cloud physics. Improving measurements of ice particles is critical for improving the predictive capabilities in the models since small ice particles (less than 100 microns) may play a significant role in radiation transfer and precipitation formation. In an effort to improve understanding of ice particles in clouds, the Atmospheric Radiation Measurement Climate Research Facility, a DOE scientific user facility, recently completed the Small Particles in Cirrus (SPartICus) experiment to examine cirrus clouds. A central focus was to address the challenging problem of large ice particles shattering on the inlets and tips of cloud particle probes, a process that produces copious ice particles that can be mistakenly measured as real ice particles. Currently, two approaches are being used to mitigate the problem: (1) redesigned probe tips and (2) improved post processing techniques. Results from SPartICus show that modified probe tips significantly reduce the number of shattered particles, but that a new particle arrival time algorithm is even more effective than the redesigned probe tips in giving accurate ice particle measurements. The analysis techniques in this paper can also be used to estimate an upper bound for the effects of shattering. This new technique provides an enhanced tool for characterizing the properties of clouds so that their representation can be improved in global climate models.

References: Lawson, R. P. 2011. "Effects of Ice Particles Shattering on the 2D-S Probe," Atmospheric Measurement Techniques 4, 1361-81. DOI: 10.5194/ amt-4-1361-2011. (Reference link)

Contact: Rickey Petty, SC-23.1, (301) 903-5548, Ashley Williamson, SC-23.1, (301) 903-3120
Topic Areas:

  • Research Area: Atmospheric System Research
  • Facility: DOE ARM User Facility

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)