DOE STANDARD

A GRADED APPROACH FOR EVALUATING RADIATION DOSES TO AQUATIC AND TERRESTRIAL BIOTA

U.S. Department of Energy
Washington, D.C. 20585

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
Foreword

1. Department of Energy (DOE) activities may expose populations of plants and animals to radioactive materials in environmental media, or to radioactive materials released in waste streams. This DOE voluntary consensus technical standard provides methods, models, and guidance within a graded approach that DOE personnel and contractors may use to characterize radiation doses to aquatic and terrestrial biota that are exposed to radioactive materials.

2. The graded approach to biota dose evaluation can be used to address requirements for radiological protection of the environment contained in DOE Orders. It can also be used to support radiological protection of the environment program elements within Environmental Management Systems (EMS) at DOE sites.

3. These methods (and the Biota Concentration Guides contained in them) are not intended to be used as design criteria, indicators of the severity of accidental releases of radioactive materials, or guides for mitigating the consequences of accidental releases. Furthermore, this technical standard does not apply to the irradiation of biota for experimental purposes, nor to research or experimental studies.

4. This technical standard and the RAD-BCG Calculator (an electronic calculational tool provided with the technical standard) can be downloaded from the Department’s Biota Dose Assessment Committee (BDAC) web site (http://homer.ornl.gov/oepa/public/bdac).

5. The graded approach to biota dose evaluation and associated guidance contained in this technical standard is also intended for use with the RESRAD-BIOTA code. The RESRAD-BIOTA dose evaluation code was designed to be consistent with the graded approach and the BCGs contained herein.

6. DOE technical standards, such as this standard, do not establish requirements. However, all or part of the provisions in a DOE standard can become requirements under the following circumstances:

(a) they are explicitly stated to be requirements in a DOE requirements document; or

(b) the organization makes a commitment to meet a standard in a contract or in an implementation plan or program plan required by a DOE requirements document.

Throughout this standard, the word “shall” is used to denote actions which must be performed if the objectives of this standard are to be met. If the provisions in this standard are made requirements through one of the two ways discussed above, then the “shall” statements would become requirements. However, “should” statements would not automatically be converted to “shall” statements if provisions in this standard become requirements, as this action would violate the consensus process used to approve this standard.
7. This technical standard has undergone extensive review throughout its development: (1) it was prepared and reviewed by the Department's Biota Dose Assessment Committee (BDAC), an approved DOE Technical Standards Program topical committee; (2) it has undergone a formal DOE review and comment resolution process as required by the Department's Technical Standards Program; (3) it was made available to other federal agencies for their review and comment through the Interagency Steering Committee on Radiation Standards (ISCORS); (4) it was reviewed by an independent external technical expert; and (5) five papers on the graded approach methodology and associated guidance contained in this technical standard have undergone external peer review for publication in scientific journals.

8. Comments in the form of recommendations, pertinent data, and lessons learned from implementation of DOE’s graded approach to biota dose evaluation that may improve future versions of this technical standard, the RAD-BCG Calculator, or the RESRAD-BIOTA code, are welcome and should be sent to:

 Mr. Stephen Domotor
 U.S. Department of Energy
 Office of Environment, Safety and Health
 Air, Water, and Radiation Division (EH-412)
 1000 Independence Avenue, S.W.
 Washington, DC 20585-0119
 Stephen.Domotor@eh.doe.gov
Table of Contents

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xvii</td>
</tr>
<tr>
<td>Scope, Purpose and Organization</td>
<td>xxi</td>
</tr>
<tr>
<td>References</td>
<td>xxiii</td>
</tr>
<tr>
<td>Definitions</td>
<td>xxxix</td>
</tr>
<tr>
<td>Acronyms and Abbreviations</td>
<td>xlvii</td>
</tr>
</tbody>
</table>

MODULE 1

1 INTRODUCTION .. M1-1

1.1 Purpose ... M1-1

1.2 Background .. M1-2

1.2.1 Increasing Interest and Need for Biota Dose Evaluation Methods ... M1-2

1.2.2 Basis for Biota Dose Limits Applied in this Technical Standard M1-3

1.2.2.1 Aquatic Organisms .. M1-4

1.2.2.2 Terrestrial Organisms M1-5

1.2.2.3 Additional Summaries and Reviews of Radiation Effects

Data on Biota Confirming NCRP and IAEA Findings M1-6

1.2.2.4 Application of Biota Dose Limits as “Dose Rate Guidelines”

for Evaluating Doses to Biota M1-7

1.2.3 Protection of Populations M1-7

2 OVERVIEW OF THE DOE GRADED APPROACH M1-9

2.1 Key Features of the Graded Approach M1-10

2.2 Key Points Regarding Methods Derivation M1-11

2.3 Relationship of the Graded Approach to Ecological Risk Assessment . M1-16

3 APPLICATION CONSIDERATIONS M1-17

3.1 Evaluating Doses to Individual Organisms M1-20

3.1.1 Threatened and Endangered Species M1-21

3.1.2 Commercially and Culturally Valued Species M1-21

3.2 Evaluating Doses to Aquatic Plants M1-21

3.3 Experimental Facilities M1-22

3.4 Hazardous Chemicals and Industrial Hazards M1-22

3.5 Frequency of Conducting Evaluations M1-22
4 STEP-BY-STEP IMPLEMENTATION OF THE GRADED APPROACH M1-23
4.1 Parameter Values that can be Modified in the Graded Approach M1-26
4.2 Use of the RAD-BCG Calculator .. M1-27
4.3 The Biota Dose Assessment Committee .. M1-28

5 DATA ASSEMBLY PHASE .. M1-31
5.1 Step 1: Consider the Sources, Receptors, and Routes of Exposure M1-31
5.2 Step 2: Define Your Area of Evaluation M1-31
5.3 Step 3: Assemble and Organize Data on Radionuclide Concentrations in Environmental Media .. M1-32
5.3.1 Aquatic System Considerations ... M1-32
5.3.2 Terrestrial System Considerations .. M1-32

6 GENERAL SCREENING PHASE ... M1-33
6.1 Step 1: Compare Data on Radionuclide Concentrations in Environmental Media with Generic BCGs Contained in Look-up Tables .. M1-33
6.1.1 Aquatic System Considerations ... M1-35
6.1.2 Dealing with High Background Levels of Naturally Occurring Radionuclides .. M1-36

7 ANALYSIS PHASE ... M1-43
7.1 Analysis Phase - Site-Specific Screening .. M1-43
7.1.1 Step 1: Assess the Representativeness of Your Input Data on Radionuclide Concentrations in Environmental Media and the Delineation of Your Evaluation Area .. M1-44
7.1.1.1 Consider Using Mean Radionuclide Concentrations M1-44
7.1.1.2 Consider Refining the Evaluation Area M1-44
7.1.1.3 Consider Obtaining Additional Radionuclide Concentration Data .. M1-44
7.1.2 Step 2: Re-Run the Screening Evaluation Using Revised Radionuclide Concentration Data and/or Evaluation Area .. M1-44
7.1.3 Step 3: Assess the Representativeness of Default Parameters and Assumptions Used in Deriving the Generic BCGs; Select Site-Specific Parameters and Generate Site-Specific BCGs .. M1-45
7.1.3.1 Identify Radionuclide-Specific Limiting Medium and Organism Type .. M1-45
7.1.3.2 Review and Select Site-Specific Lumped Parameters M1-45
7.1.3.3 Review and Select Site-Representative K_d's M1-46
7.1.4 Step 4: Re-Run the Screening Evaluation and Compare Data on Radionuclide Concentrations in Environmental Media with Newly-Generated Site-Specific BCGs .. M1-47

7.2 Analysis Phase - Site-Specific Analysis M1-47
7.2.1 Step 5: Assess the Representativeness of Default Parameters and Assumptions Employed in Kinetic/Allometric Models; Select Site-Specific Parameters and Generate Site-Specific BCGs

7.2.1.1 Identify Radionuclide-Specific Limiting Medium and Organism Type

7.2.1.2 Consider Correction Factor for Exposure Area or Receptor Residence Time

7.2.1.3 Riparian and Terrestrial Animals: Review and Select Parameters Representative of Site-Specific Conditions and Receptors

7.2.1.4 Riparian and Terrestrial Animals: Review and Select Food Source Parameter Values Representative of Site-Specific Receptors

7.2.2 Step 6: Re-Run the RAD-BCG Calculator and Compare Data on Radionuclide Concentrations in Environmental Media with Newly Generated Site-Specific BCGs

7.3 Analysis Phase - Conducting a Site-Specific Biota Dose Assessment

7.3.1 Determine if Additional Analysis is Warranted

7.3.2 An Important Note Concerning the Use of Available Biota Tissue Data

7.3.3 Step 1: Assemble a Biota Dose Assessment Team

7.3.4 Step 2: Review Requirements

7.3.5 Step 3: Review Assumptions

7.3.6 Recommended Approaches to Designing and Conducting the Dose Assessment

7.3.7 Designing and Conducting the Dose Assessment

8 DOCUMENTING YOUR BIOTA DOSE EVALUATION RESULTS

9 EXAMPLE APPLICATIONS OF THE GRADED APPROACH

9.1 Generic Example of an Aquatic System Evaluation

MODULE 2

1 THE GRADED APPROACH, ECOLOGICAL RISK ASSESSMENT, AND GUIDANCE ON THEIR IMPLEMENTATION IN EVALUATING RADIATION DOSES TO BIOTA

1.1 Purpose of this Section

1.2 Relationship of the Graded Approach and the Ecological Risk Assessment Framework

1.3 Principal and Alternative Uses of the Graded Approach

1.4 Technical Issues to be Considered when Evaluating Radiation as a Stressor to the Environment

1.4.1 Problem Formulation

1.4.1.1 Scope of the Assessment
1.4.1.2 Stressor Characteristics .. M2-4
1.4.1.3 Assessment Endpoints .. M2-5
1.4.1.4 Conceptual Model ... M2-6
1.4.1.5 Analysis Plan .. M2-6
1.4.1.6 Measures ... M2-7
1.5 Analysis .. M2-7
1.5.1 Exposure Analysis .. M2-7
1.5.2 Effects Analysis ... M2-9
1.6 Risk Characterization ... M2-10

2 GUIDANCE ON SOURCES, RECEPTORS, AND ROUTES OF EXPOSURE . . . M2-13
2.1 General Considerations for Identifying Sources, Receptors, and Exposure Pathways ... M2-13
2.1.1 Sources .. M2-14
2.1.2 Receptors and Routes of Exposure Considered in the Graded Approach ... M2-15
2.1.3 Examples of Receptors That Could Serve as Good Indicators of Radiological Impact .. M2-15
2.2 Rationale for the Active Air Pathway as a Minor Source of Exposure ... M2-20
2.2.1 Behavior of Radionuclides Discharged to the Atmosphere ... M2-20
2.2.2 Exposure Pathways Resulting from Atmospheric Releases ... M2-21
2.2.3 Compliance with Human Radiation Dose Limits at DOE Sites Relative to Biota Dose Limits: A Perspective M2-21
2.2.4 Derivation of Biota Concentration Guides for Active Air Releases ... M2-22
2.2.5 Summary and Conclusions .. M2-23
2.3 Aquatic Plants .. M2-23
2.4 Direct Measurement of Radiation Fields .. M2-23
2.4.1 Considerations for Evaluating Doses to Biota around Accelerators or other Sources of Direct Radiation M2-24

3 GUIDANCE ON SPATIAL AND TEMPORAL AVERAGING REGARDING APPLICATION OF BIOTA DOSE LIMITS AND MEAN RADIONUCLIDE CONCENTRATIONS .. M2-27
3.1 Use of Time Averaging in Applying Dose Limits for Aquatic and Terrestrial Biota .. M2-27
3.1.1 Guidance on Time Averaging in Applying Daily Dose Limits ... M2-27
3.1.2 Rationale for Guidance on Time Averaging .. M2-28
3.2 Guidance on Spatial Variability in Applying Dose Limits .. M2-29
3.3 Guidance on Estimating Mean Values ... M2-31
3.3.1 Adjustments to Account for Spatial and Temporal Distributions of Radionuclides in the Environment When Estimating Mean Concentrations ... M2-31
4 GUIDANCE FOR DEFINING THE EVALUATION AREA M2-35
 4.1 General Considerations ... M2-35
 4.2 Step-by-Step Guidance ... M2-35

5 GUIDANCE ON SOIL SAMPLING RELATIVE TO PLANT ROOTING DEPTHS . M2-39
 5.1 Overview of the Problem .. M2-39
 5.2 Plant Rooting Depths .. M2-40
 5.3 Consider the Need for Site-Specific Plant Uptake Factors M2-41
 5.4 Survey Design Considerations M2-41

6 GUIDANCE ON BIOTA SAMPLING TO SUPPORT IMPLEMENTATION OF
 THE GRADED APPROACH .. M2-45
 6.1 An Important Note about Biota Sampling and Temporal Variation M2-45
 6.2 General Planning Considerations M2-46
 6.2.1 Use of Data Quality Objectives M2-48
 6.2.2 Selection of Receptor Species Sampled M2-48
 6.2.3 Variability of Exposure M2-49
 6.2.4 Representative Population Exposures M2-50
 6.2.5 Dosimetry Models ... M2-50
 6.2.5.1 Aquatic and Terrestrial Vertebrates M2-50
 6.2.5.2 Terrestrial Plants M2-52
 6.2.5.3 Analytical Requirements M2-52
 6.2.5.4 Other Data Needs .. M2-52
 6.3 Sampling Design and Statistical Methods M2-53
 6.3.1 Sampling Considerations M2-53
 6.3.1.1 Definition of Population M2-53
 6.3.1.2 Sampling Units ... M2-54
 6.3.1.3 Types of Sampling Designs M2-54
 6.3.1.4 Sampling Bias .. M2-55
 6.3.1.5 Background/Reference Areas M2-55
 6.3.2 Statistical Considerations M2-56
 6.3.2.1 Determination of Underlying Data Distribution M2-56
 6.3.2.2 Calculation of Summary Statistics and Confidence
 Limits ... M2-57
 6.3.2.3 Determination of Minimum Sampling Size M2-59
 6.3.3 Uncontrollable Events .. M2-60
 6.4 Biota Sampling Methods ... M2-60
 6.4.1 Aquatic Biota ... M2-61
 6.4.1.1 Fish ... M2-61
 6.4.1.2 Benthic Invertebrates M2-62
 6.4.1.3 Amphibians and Reptiles M2-63
 6.4.2 Terrestrial Biota .. M2-63
 6.4.2.1 Plants .. M2-64
 6.4.2.2 Mammals .. M2-64
 6.4.2.3 Birds .. M2-65
 6.4.2.4 Earthworms ... M2-67
6.4.2.5 Terrestrial Arthropods .. M2-68
6.4.3 Additional Sampling Considerations M2-68
6.4.3.1 Quality Assurance/Quality Control M2-68
6.4.3.2 Sample Handling .. M2-68
6.4.3.3 Permits ... M2-69
6.4.3.4 Euthanasia ... M2-70
6.4.3.5 Health and Safety .. M2-70

7 GUIDANCE ON RADIATION WEIGHTING FACTOR
FOR ALPHA PARTICLES ... M2-75
7.1 Statement of Issue .. M2-75
7.2 Previous Assumptions About Radiation Weighting Factor M2-75
7.3 Radiation Effects of Concern in Biota M2-76
7.4 Data on Deterministic RBEs for High-LET Radiations M2-76
7.5 Recommendations on Radiation Weighting Factor for Alpha Particles .. M2-77
7.6 Guidance on Radiation Weighting Factor for Alpha Particles M2-78

8 GUIDANCE ON THE APPLICABILITY OF THE GRADED APPROACH FOR
EVALUATING DOSE TO INDIVIDUAL ORGANISMS M2-79
8.1 Considerations on the Meaning of "Individual" Organism M2-79
8.2 Applicability of Methods and Models Contained in the Graded Approach to Evaluations of Individual Organisms M2-79
8.3 Applicability of Biota Dose Limits to Protection of Individual Organisms .. M2-80
8.4 Use of the DOE Graded Approach for Evaluating Dose to Individual Organisms: Application Considerations M2-80
8.5 Consideration of Deterministic vs. Stochastic Effects M2-81

MODULE 3

1 INTRODUCTION AND BASIS FOR APPROACH M3-1
1.1 Pathways, Media Types, and Organism Types Addressed M3-1
1.2 Selection of Target Radionuclides M3-2
1.3 Overview of the Technical Approach for Deriving the BCGs M3-2
1.4 Selection of the Most Limiting BCGs for Use in General Screening M3-3

2 DOSE COEFFICIENTS ... M3-5
2.1 External Dose Coefficients .. M3-5
2.1.1 Introduction ... M3-5
2.1.2 Approach to Calculating External Dose Coefficients M3-5
2.1.2.1 Screening-Level External Dose Coefficients for Aquatic Animals .. M3-6
2.1.2.2 Screening-Level External Dose Coefficients for Terrestrial Biota .. M3-8
2.1.3 Discussion of Results .. M3-8
2.2 Internal Dose Coefficients ... M3-16
2.2.1 Approach to Calculating Internal Dose Coefficients M3-16
3 EQUATIONS AND MODELS FOR CALCULATING DOSE TO BIOTA AND
DERIVING BCGS M3-19
3.1 An Important Note on Estimating Internal Tissue Concentrations for
Use in Dose Equations: The Lumped Parameter M3-19
3.2 Equations and Models for Aquatic Systems M3-22
 3.2.1 Aquatic Animals M3-22
 3.2.2 Riparian Animals M3-23
 3.2.3 Important Considerations When Implementing Equations and
 Models in an Aquatic System Evaluation M3-25
3.3 Equations and Models for Terrestrial Systems M3-26
 3.3.1 Terrestrial Plants M3-26
 3.3.2 Terrestrial Animals M3-27
3.4 Alternatives to Lumped Parameters for Riparian and Terrestrial
 Animals: The Kinetic/Allometric Method M3-29
 3.4.1 A Scaling Approach to Predicting Tissue Concentrations M3-30
 3.4.1.1 Estimating Intake (Soil Pathway) M3-30
 3.4.1.2 Estimating the Total Loss Rate from the Organism M3-31
 3.4.1.3 Calculating the Fractional Buildup to Equilibrium Tissue
 Concentrations M3-34
 3.4.1.4 Calculating Species-Independent Tissue Concentrations
 from Soil Exposure M3-34
 3.4.1.5 Calculating Limiting Soil Concentrations (BCGs) Using
 the Kinetic/Allometric Method: An Example M3-35
 3.4.2 Application of the Kinetic/Allometric Method in the Derivation of
 BCGs for Riparian Animals M3-36
 3.4.3 Application of the Kinetic/Allometric Method in the Derivation of
 BCGs for Terrestrial Animals M3-38
3.5 Selection of Lumped Parameters for Riparian and Terrestrial Animals .. M3-39
4 DEFAULT PARAMETERS AND THEIR SOURCES M3-47
 4.1 Bioaccumulation Factors (Bivs) M3-47
 4.2 Distribution Coefficients M3-51
 4.3 Coefficients Used in the Kinetic/Allometric Method M3-53
Figures

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>xxii</td>
</tr>
<tr>
<td>1.1</td>
<td>M1-8</td>
</tr>
<tr>
<td>2.1</td>
<td>M1-9</td>
</tr>
<tr>
<td>2.2</td>
<td>M1-13</td>
</tr>
<tr>
<td>2.3</td>
<td>M1-13</td>
</tr>
<tr>
<td>2.4</td>
<td>M1-14</td>
</tr>
<tr>
<td>2.5</td>
<td>M1-15</td>
</tr>
<tr>
<td>4.1</td>
<td>M1-23</td>
</tr>
<tr>
<td>7.1</td>
<td>M1-56</td>
</tr>
<tr>
<td>7.2</td>
<td>M1-57</td>
</tr>
<tr>
<td>7.3</td>
<td>M1-58</td>
</tr>
</tbody>
</table>

MODULE 1

1.1 Approximate Acute Lethal Dose Ranges for Various Taxonomic Groups

2.1 Overview of the DOE Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota

2.2 Exposure Pathways for Aquatic Animals

2.3 Exposure Pathways for Riparian Animals

2.4 Exposure Pathways for Terrestrial Plants

2.5 Exposure Pathways for Terrestrial Animals

4.1 Flowchart Illustrating Step-by-Step Guidance for Progressing Through the DOE Graded Approach

7.1 Problem Formulation, Phase 1 of Dose Assessment

7.2 Analysis, Phase 2 of Dose Assessment

7.3 Risk Characterization, Phase 3 of Dose Assessment

MODULE 2

1.1 Problem Formulation, Phase 1 of Dose Assessment

1.2 Analysis, Phase 2 of Dose Assessment

1.3 Risk Characterization, Phase 3 of Dose Assessment

2.1 Exposure Pathways for Aquatic Animals

2.2 Exposure Pathways for Riparian Animals

2.3 Exposure Pathways for Terrestrial Plants

2.4 Exposure Pathways for Terrestrial Animals

4.1 Hypothetical Maps of Contaminated Areas
Tables

MODULE 1

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of the DOE’s Three-Step Process for Evaluating Radiation Doses to Aquatic and Terrestrial Biota</td>
</tr>
<tr>
<td>2.2</td>
<td>Assumptions Regarding Sources, Receptors, and Routes of Exposure Applied in the General Screening Phase of the Graded Approach</td>
</tr>
<tr>
<td>2.3</td>
<td>General Dose Equation and Approach Used to Derive BCGs</td>
</tr>
<tr>
<td>3.1</td>
<td>Applications Matrix Summarizing Intended and Potential Uses of the DOE Graded Approach</td>
</tr>
<tr>
<td>4.1</td>
<td>Summary of Parameter Values that Can be Modified Corresponding to Each Phase of the Graded Approach</td>
</tr>
<tr>
<td>4.2</td>
<td>Contents of the RAD-BCG Calculator</td>
</tr>
<tr>
<td>6.1</td>
<td>Biota Concentration Guides (BCGs) for Water and Sediment (in SI Units) for Use in Aquatic System Evaluations</td>
</tr>
<tr>
<td>6.2</td>
<td>Biota Concentration Guides (BCGs) for Water and Sediment (in Special Units) for Use in Aquatic System Evaluations</td>
</tr>
<tr>
<td>6.3</td>
<td>Biota Concentration Guides (BCGs) for Water and Soil (in SI Units) for Use in Terrestrial System Evaluations</td>
</tr>
<tr>
<td>6.4</td>
<td>Biota Concentration Guides (BCGs) for Water and Soil (in Special Units) for Use in Terrestrial System Evaluations</td>
</tr>
<tr>
<td>6.5</td>
<td>Part 1 of Dose Factors and Common Parameters Spreadsheet</td>
</tr>
<tr>
<td>7.1</td>
<td>Aquatic Animal Biota Concentration Guide Spreadsheet</td>
</tr>
<tr>
<td>7.2</td>
<td>Part 1 of the Riparian Animal Biota Concentration Guide Spreadsheet</td>
</tr>
<tr>
<td>7.3</td>
<td>Terrestrial Plant Biota Concentration Guide Spreadsheet</td>
</tr>
<tr>
<td>7.4</td>
<td>Part 1 of the Terrestrial Animal Biota Concentration Guide Spreadsheet</td>
</tr>
<tr>
<td>7.5</td>
<td>Part 2 of the Riparian Animal Biota Concentration Guide Spreadsheet</td>
</tr>
<tr>
<td>7.6</td>
<td>Part 3 of the Riparian Animal Biota Concentration Guide Spreadsheet</td>
</tr>
</tbody>
</table>
MODULE 2

2.1 General Considerations for Defining Sources, Receptors, and Rates of Exposure .. M2-13

2.2 Examples of Representative Organisms That Could Serve as Indicators of Radiological Impact .. M2-16

5.1 Average and Ranges of Rooting Depths by Plant Type M2-41

6.1 Comparison of Common Arthropod Sampling Techniques M2-71

MODULE 3

2.1 Screening-Level External Dose Coefficients for Exposure of Aquatic Animals to Contaminated Sediments .. M3-11

2.2 Screening-Level External Dose Coefficients for Exposure of Aquatic Animals to Contaminated Water ... M3-13

2.3 Screening-Level External Dose Coefficients for Exposure of Terrestrial Biota to Contaminated Soil ... M3-15

2.4 Screening-Level Internal Dose Factors .. M3-18

3.1 Parameters Used in Kinetic/Allometric Method Uncertainty Analysis for Riparian and Terrestrial Animals .. M3-41

3.2A A Comparison of Lumped Parameter Values Determined by Uncertainty Analysis on the Kinetic/Allometric Method, Product Approach, and Empirical Data (Literature Values): Riparian Animal to Sediment M3-43

3.2B A Comparison of Lumped Parameter Values Determined by Uncertainty Analysis on the Kinetic/Allometric Method, Product Approach, and Empirical Data (Literature Values): Riparian Animal to Water M3-44

3.2C A Comparison of Lumped Parameter Values Determined by Uncertainty Analysis on the Kinetic/Allometric Method, Product Approach, and Empirical Data (Literature Values): Terrestrial Animal to Soil M3-45
3.2D A Comparison of Lumped Parameter Values Determined by Uncertainty Analysis on the Kinetic/Allometric Method, Product Approach, and Empirical Data (Literature Values): Terrestrial Animal to Water M3-46

4.1 Default Bioaccumulation Factors (B_{iv}s) for Aquatic Species M3-48

4.2 Default Bioaccumulation Factors (B_{iv}s) for Terrestrial Plants M3-49

4.3 Most Probable K_d Values for Use in Calculating BCGs for Sediment or Water for an Aquatic System Evaluation in the Absence of Co-Located Water and Sediment Data ... M3-52

4.4 Source of Default f_1 Values Used for Riparian and Terrestrial Animals M3-53

4.5 Source of Data Used in Estimating Biological Half-Times for Riparian and Terrestrial Animals ... M3-54

4.6 Factors Used in Assessing the Relative Contribution to Internal Dose from Animal Inhalation versus Ingestion .. M3-55

4.7 Allometric Equations and Parameter Values Used in Estimating Intake of Riparian Animal Organisms ... M3-56

4.8 Allometric Equations and Parameter Values Used in Estimating Intake of Terrestrial Animal Organisms .. M3-57
Acknowledgments

This voluntary consensus technical standard was prepared by the Department's Air, Water and Radiation Division (EH-412) and the Core Team of the Biota Dose Assessment Committee (BDAC). The BDAC is a technical standards topical committee organized under the Department of Energy Technical Standards Program. The purpose of the BDAC is (a) to assist, consistent with DOE needs, in developing and promoting technical standards and associated guidance for DOE-wide applications in assessing radiation dose to biota, (b) to serve as a major forum within DOE for obtaining technical assistance, discussing technical issues, and sharing lessons learned regarding biota dose standards and assessment methods, and (c) to serve as a technical resource and advisory group for DOE program and field elements in the design and review of site-specific biota dose assessments. The committee has broad representation from DOE Offices, national laboratories, universities, and the private sector. The BDAC charter can be obtained from the BDAC web site at: http://homer.ornl.gov/oepa/public/bdac.

A guiding principle for the BDAC is that both "developers" and "users" be part of the methods development process. Consistent with the BDAC's values and guiding principles documented in the BDAC charter, this technical standard was prepared using an interdisciplinary team approach. Each member of the Core Team brought with them specific expertise in health physics, ecology, radioecology, environmental monitoring, or risk assessment. The collective knowledge gained through this teeming orientation proved to be essential for developing the methods and implementation guidance presented in this technical standard.

The Core Team consists of the following members: Mr. Ernest Antonio, Pacific Northwest National Laboratory (PNNL); Dr. Gordon Bilyard, PNNL; Mr. Stephen Domotor, DOE-EH-412; Dr. Gary Friday, Westinghouse Savannah River Company (WSRC); Dr. Kathryn Higley, Oregon State University; Mr. Daniel Jones, Oak Ridge National Laboratory (ORNL); Dr. David Kocher, SENES-Oak Ridge; Dr. Randall Morris, Environmental Science and Research Foundation, and TREC, Inc.; Dr. Bradley Sample, CH2MHill; and Ms. Patricia Scofield, ORNL.

Members of the Core Team, and other members of the BDAC, served as lead developers or contributors for several key areas of the technical standard. These individuals, and their specific contributions, are highlighted below. We are grateful to them for their contributions.

Technical Standard Development

BDAC Chairperson: Mr. Stephen Domotor (EH-412); technical standard preparation, integration, and coordination: Mr. Stephen Domotor (EH-412), with support from Ms. Audrey Lamanna, Ms. Melissa Hatcher, Mr. Jamie McDonald, and Mr. Clyde Lichtenwalner (Energetics, Inc.); screening methodology concepts and development: Dr. Kathryn Higley (Oregon State University) and Dr. David Kocher (SENES-Oak Ridge); kinetic/allometric modeling concepts and development, and RAD-BCG Calculator design: Dr. Kathryn Higley (Oregon State University).
Specific Contributions

Conceptual framework and application of the graded approach: Mr. Stephen Domotor (EH-412), with support from the BDAC Core Team; primer on ecological risk assessment concepts and issues concerning the evaluation of radiation as a stressor: Mr. Daniel Jones (ORNL); interpretation and application of biota dose limits: Dr. David Kocher (SENES-Oak Ridge); sources, receptors, and routes of exposure: Dr. Gordon Bilyard (PNNL); defining the area of evaluation: Dr. Randall Morris (Environmental Science and Research Foundation, and TREC, Inc.); dealing with high background levels of naturally-occurring radionuclides: Dr. Randall Morris (Environmental Science and Research Foundation, and TREC, Inc.) and Mr. Daniel Jones (ORNL); soil sampling guidance: Dr. Gordon Bilyard (PNNL) and Mr. Daniel Jones (ORNL); biota sampling guidance: Mr. Daniel Jones (ORNL) and Dr. Bradley Sample (CH2M-Hill); guidance on radiation weighting factor for alpha particles: Dr. David Kocher (SENES-Oak Ridge); evaluating dose to individual organisms: Dr. David Kocher (SENES-Oak Ridge); derivation of dose coefficients, dose equations and models, and BCGs: Dr. Kathryn Higley (Oregon State University), Dr. David Kocher (SENES-Oak Ridge), Mr. Ernest Antonio (PNNL), and Mr. Stephen Domotor (EH-412); preparation of example applications of the graded approach: Mr. Ernest Antonio (PNNL) and Ms. Patricia Scofield (ORNL).

We are grateful to Dr. Gary Friday of the Westinghouse Savannah River Corporation (WSRC) for his valuable comments and recommendations concerning ecological risk issues and technical considerations.

We are grateful to Dr. Ward Whicker (Colorado State University) for his independent technical peer review of this technical standard.

We thank Dr. Alvin Young, DOE Office of Environmental Management Center for Risk Excellence, for sponsoring and coordinating the independent technical peer review of this technical standard.

We thank all of the BDAC members who provided comments and recommendations on previous drafts of this technical standard, and who provided recommendations on the screening and analysis methods which were piloted at the 1999 BDAC Meeting. We also thank the representatives from federal and state agencies, and international organizations, who provided review comments on previous drafts of this technical standard.

We thank Mr. Fred Baes (ORNL) for BDAC web site design, database design, and maintenance support.

We thank Mr. Richard Serbu of the Department’s Technical Standards Program (DOE-TSP) for guidance and support provided in establishing the BDAC.

We thank the DOE-TSP Managers and points of contact for their helpful comments and suggestions on this technical standard during the DOE-TSP formal review process.
We thank Mr. Andrew Lawrence, Director of the Office of Environmental Policy and Guidance (EH-41); Mr. Andrew Wallo III, Director of the Air, Water, and Radiation Division (EH-412); and Mr. Harold Peterson, EH-412 Environmental and Radiological Evaluation Unit Leader, for sponsoring the BDAC and supporting the development of this technical standard.

We thank Mr. Raymond Berube, Deputy Assistant Secretary for Environment (EH-4), for his support and recognition of the BDAC’s pioneering spirit and efforts in developing the biota dose evaluation methods in this technical standard.
Scope, Purpose and Organization

This technical standard provides methods, models, and guidance within a graded approach that the U.S. Department of Energy (DOE) and its contractors may use to evaluate doses of ionizing radiation to populations of aquatic animals, terrestrial plants, and terrestrial animals from DOE activities for the purpose of demonstrating protection relative to Dose Rate Guidelines. It provides dose evaluation methods that can be used to meet the requirements of DOE Order 5400.5, “Radiation Protection of the Public and the Environment” (1990a) and DOE Order 5400.1, “General Environmental Protection Program” (1990b). The technical standard assumes a threshold of protection for plants and animals at the following doses: for aquatic animals, 1 rad/d (10 mGy/d); for terrestrial plants, 1 rad/d (10 mGy/d); and for terrestrial animals, 0.1 rad/d (1 mGy/d). Available data indicate that dose rates below these limits cause no measurable adverse effects to populations of plants and animals.

The DOE graded approach includes a screening method and three more detailed levels of analysis for demonstrating compliance with applicable dose limits for protection of biota. The general screening method provides appropriately conservative limiting concentrations of radionuclides in environmental media (termed “Biota Concentration Guides” or BCGs). Radionuclide concentrations in samples of environmental media are easily compared with the BCGs to evaluate compliance with biota dose limits. The three more detailed analysis methods require more effort, but yield more accurate and realistic biota dose evaluations.

This technical standard is designed to be user-friendly, and is organized into three principal Modules for ease of implementation. Material in each Module is cross-referenced to pertinent sections in other Modules. There is some duplication of material across Modules by design, in order to allow each to be used separately, if desired. Module 1 serves as the principal users guide for step-by-step implementation of the graded approach to biota dose evaluation. Module 2 serves as a resource guide, providing detailed guidance for implementing key elements of the graded approach identified in Module 1, and providing a “primer” on technical issues to be considered when evaluating radiation as a stressor to the environment. Module 3 serves as a technical reference source, providing the technical basis for the derivation of dose models, screening values, and selection of default assumptions and parameters applied in the graded approach. The organization and content of the technical standard are provided in Figure 1.
Figure 1 Organization and Contents of the DOE Technical Standard
References

Definitions

As defined and used in this technical standard:

Absorbed Dose (D) is the energy imparted to matter by ionizing radiation per unit mass of irradiated material at the place of interest in that material. More specifically, for any radiation type and any medium, absorbed dose (D) is the total energy (\(e\)) absorbed per unit mass (\(m\)) of material: \(D = \frac{e}{m}\). The absorbed dose is expressed in units of rad (gray), where 1 rad = 0.01 joule/kg material (1 gray = 100 rad). For the purposes of this technical standard, the absorbed dose in an organism is assumed to be the average value over the whole organism.

Allometric refers to the relative growth of a part in relation to the entire organism.

Alpha Particle is a helium-4 nucleus consisting of two protons and two neutrons, given off by the decay of many heavy elements, including uranium and plutonium. Because the particles are slow moving as well as heavy, alpha radiation can be blocked by a sheet of paper. However, once an alpha emitter is in living tissue, it can cause substantial damage because of the high ionization density along its path.

Aquatic Biota is plant or animal life living in or on water.

Arithmetic Mean is the most commonly used measure of central tendency, commonly called the “average.” Mathematically, it is the sum of all the values of a set divided by the number of values in the set:

\[
\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}
\]

Assessment Endpoint is an explicit expression of the environmental value that is to be protected, operationally defined by an ecological entity and its attributes. For example, salmon are valued ecological entities; reproduction and age class structure are some of their important attributes. Together "salmon reproduction and age class structure" form an assessment endpoint.

Average - See “Arithmetic Mean.”

Beta Particle is an electron. It has a short range in air. Beta particles are moderately penetrating and can cause skin burns from external exposure, but can be blocked by a sheet of plywood.

Bias is a consistent underestimation or overestimation of the true values representing a population.

Bioaccumulation is the ratio of the contaminant concentration in the organism relative to the contaminant concentration in an environmental medium resulting from the uptake of the
contaminant from one or more routes of exposure. This ratio is typically described through a bioaccumulation factor (B_a).

Biomagnification is the tendency of some contaminants to accumulate to higher concentrations at higher levels in the food web through dietary accumulation.

Biota is plant and animal life of a particular region.

Biota Concentration Guide (BCG) is the limiting concentration of a radionuclide in soil, sediment, or water that would not cause dose limits for protection of populations of aquatic and terrestrial biota (as used in this technical standard) to be exceeded.

Carnivore is a flesh-eating animal.

Chronic refers to an extended continuous exposure to a stressor or the effects resulting from such an exposure.

Community is an assemblage of populations of different species within a specified location in space and time.

Conceptual Model is a written description and visual representation of predicted relationships between ecological entities and the stressors to which they may be exposed.

Data Quality Objectives (DQOs) are qualitative and quantitative statements that clarify technical and quality objectives for a study, define the appropriate type of data, and specify tolerable levels of uncertainty that a data user is willing to accept in the decision. DQOs specify the problem to be solved, the decision, the inputs to the decision, the boundaries of the study, the decision rule, and the limits of uncertainty.

Deterministic Effects are those for which the severity is a function of dose, and for which a threshold usually exists.

Discharge Point is a conduit through which any radioactively contaminated gas, water, or solid is discharged to the atmosphere, waters, or soils.

Distribution Coefficient is the ratio of the mass of solute species absorbed or precipitated on the soil or sediment to the solute concentration in the water. This ratio is typically described through a K_d factor.

Ecological Relevance is one of three criteria for assessment endpoint selection. Ecologically relevant endpoints reflect important characteristics of the system and are functionally related to other endpoints.

Ecological Risk Assessment is the process that evaluates the likelihood that adverse ecological effects may occur or are occurring as a result of exposure to one or more stressors.
Effluent is any treated or untreated air emission or liquid discharge, including storm water runoff.

Effluent Monitoring is the collection and analysis of samples or measurements of liquid, gaseous, or airborne effluents for the purpose of characterizing and quantifying contaminant levels and process stream characteristics, assessing radiation exposures to members of the public and the environment, and demonstrating compliance with applicable standards.

Environmental Medium is a discrete portion of the total environment, animate or inanimate, that may be sampled or measured directly.

Environmental Surveillance is the collection and analysis of samples of air, water, soil, foodstuffs, biota, and other media and the measurement of external radiation and radioactive materials for purposes of demonstrating compliance with applicable standards, assessing radiation exposures to members of the public, and assessing effects, if any, on the local environment.

Error is the difference between an observed or measured value and its true value.

Exposure is the co-occurrence or contact between the endpoint organism and the stressor (e.g., radiation or radionuclides).

Facility means a building, structure, or installation subject to the regulations/standards pertinent to this technical standard.

Forb is an herb other than grass.

Gamma Rays are high-energy electromagnetic photons similar to X-rays. They are highly penetrating and several inches of lead or several feet of concrete are necessary to shield against them.

Geometric Mean is mathematically expressed as the n^{th} root of the product of all values in a set of n values:

$$
\bar{X}_g = \left(\prod_{i=1}^{n} X_i \right)^{1/n}
$$

or as the antilogarithm of the arithmetic mean of the logarithms of all the values of a set of n values:

$$
\bar{X}_g = \text{antilog} \left(\frac{1}{n} \sum_{i=1}^{n} \log X_i \right)
$$
The geometric mean is generally used when the logarithms of a set of values are normally distributed, as is the case for much of the monitoring and surveillance data.

Geometric Standard Deviation is mathematically expressed as the antilog of the standard deviation of the logarithms of the measurements:

\[
S_g = \text{antilog} \left[\frac{1}{n} \sum_{i=1}^{n} \log X_i \right]^{1/2}
\]

Grab Sample is a single sample acquired over a short interval of time.

Herbivore is a plant-eating animal.

Lentic refers to living in or relating to still waters (as lakes, ponds, or swamps).

Lotic refers to living in or relating to actively moving water (as streams or rivers).

Median is the middle value of a set of data when the data are ranked in increasing or decreasing order. If there is an even number of values in the set, the median is the arithmetic average of the two middle values; if the number of values is odd, it is the middle value.

Mode refers to the value occurring most frequently in a data set.

Monitoring is the use of instruments, systems, or special techniques to measure liquid, gaseous, solid, and/or airborne effluents and contaminants.

Nuclide refers to an isotope, either stable or unstable, of any chemical element.

Phylogenetic refers to the evolution of a genetically related group of organisms as distinguished from the development of the individual organism.

Poikilothermic refers to a cold-blooded organism.

Population is an aggregate of individuals of a species within a specified location in space and time.

Proportional Sample is a sample consisting of a known fraction of the original stream.

Quality refers to the totality of features and characteristics of a material, process, product, service, or activity that bears on its ability to satisfy a given purpose.
Quality Assurance (QA) refers to those planned and systematic actions necessary to provide adequate confidence that a measurement represents the sampled population. Quality assurance includes quality control (QC), which comprises all those actions necessary to control and verify the features and characteristics of a material, process, product, or service to specified requirements.

Quality Control (QC) refers to those actions necessary to control and verify the features and characteristics of a material, process, product, service, or activity to specified requirements. The aim of quality control is to provide quality that is satisfactory, adequate, dependable, and economical.

Rad is a unit of absorbed dose of ionizing radiation equal to an energy of 100 ergs per gram of irradiated material.

Radiation (Ionizing) refers to alpha particles, beta particles, photons (gamma rays or x-rays), high-energy electrons, and any other particles capable of producing ions.

Radioactive Material refers to any material or combination of materials that contain radionuclides that spontaneously emits ionizing radiation.

Radionuclide is an unstable nuclide that undergoes spontaneous transformation, emitting radiation. There are approximately 2,200 known radionuclides, both man-made and naturally occurring. A radionuclide is identified by the number of neutrons and protons in the atomic nucleus and its half-life.

Random Error refers to variations of repeated measurements made within a sample set that are random in nature and individually not predictable. The causes of random error are assumed to be indeterminate or non-assignable. Random errors are generally assumed to be normally distributed.

Random Samples are samples obtained in such a manner that all items or members of the lot, or population, have an equal chance of being selected in the sample.

Range is the difference between the maximum and minimum values of a set of values.

Relative Biological Effectiveness (RBE) is defined as the ratio of the absorbed dose of a reference radiation (normally gamma rays or X rays) required to produce a level of biological response to the absorbed dose of the radiation of concern required to produce the same level of biological response, all other conditions being kept constant.

Representative Individual is an individual organism within a population that receives a radiation dose which is equivalent to the value of the appropriate measure of central tendency (i.e., mean, median, mode) of the distribution of doses received by that population. The individual is assumed to be representative of the population as a whole.
Representative Sample is a sample taken to depict the characteristics of a lot or population as accurately and precisely as possible. A representative sample may be a “random sample” or a “stratified sample” depending upon the objective of the sampling and the characteristics of the conceptual population.

Riparian Organisms are those organisms related to, living, or located on the bank of a natural watercourse (as a river) or sometimes of a lake or a tidewater.

Safety Factor is a factor applied to an observed or estimated toxic concentration or dose to arrive at a criterion or standard that is considered safe.

Sample has two definitions: 1) A subset or group of objects selected from a larger set, called the “lot” or “population;” and 2) an extracted portion or subset of an effluent stream or environmental media.

Sampling is the extraction of a prescribed portion of an effluent stream or of an environmental medium for purposes of inspection and/or analysis.

Sequential Sampling refers to timed samples collected from an effluent stream.

Site refers to the land or property upon which DOE facilities or activities are located and access to which is subject to Departmental or DOE contractor control.

Source (Radioactive) is either (1) a known amount of radioactive material emanating a characteristic amount of energy in the form of alpha, beta, gamma, neutron, or x-ray emissions (or a combination of such emissions), or (2) a single process or release point that contributes to or causes a release to the environment and that can be separated from other processes by a break in the flow of material.

Standard Deviation is an indication of the dispersion of a set of results around the average of samples collected or the mean of a population; it is the positive square root of the sample variance. For samples taken from a population, the standard deviation, \(s \), is calculated as:

\[
\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}
\]

where \(\bar{X} \) = average value of the samples measured;

\(n \) = number of samples measured; and

\(X_i \) = individual measurement value for sample \(i \).

For a finite population, the standard deviation (\(\sigma \)) is
where \(F \) is the mean value of the population and \(N \) is the number of values within the population.

Stochastic Effects are those for which the probability of occurrence is a function of dose, but the severity of the effects is independent of dose.

Stratified Sample (Stratified Random Sample) refers to a sample consisting of various portions that have been obtained from identified subparts or subcategories (strata) of the total lot or population. Within each category or stratum, the samples are taken randomly. The objective of taking stratified samples is to obtain a more representative sample than might be obtained by a completely random sampling.

Systematic Error is the condition in which there is a consistent deviation of the results from the actual or true values by a measurement process. The cause for the deviation, or bias, may be known or unknown; however, it is considered “assignable” (i.e., the cause can be reasonably determined).

Terrestrial Biota is plant and animal life living on or in land.

Variability is a general term for the dispersion of values in a data set.

Variance is a measure of the variability of samples within a subset or the entire population. Mathematically, the sample variance (\(s^2 \)) is the sum of squares of the differences between the individual values of a set and the arithmetic average of the set, divided by one less than the number of values:

\[
s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2
\]

where \(X_i \) = value of sample \(i \);

\(\bar{X} \) = average of samples measured; and

\(n \) = number of samples measured.

For a finite population, the variance (\(\sigma^2 \)) is the sum of squares of deviations from the arithmetic mean, divided by the number of values in the population:
where \(F \) is the mean value of the population and \(N \) is the number of values within the population.
Acronyms and Abbreviations

λ_{bio} biological decay constant

λ_{eff} the combination of biological and radiological decay constants

λ_{rad} radiological decay constant

ACRP Advisory Committee on Radiation Protection

ASTM American Society for Testing and Materials

B_{v} bioaccumulation factor

BCG Biota Concentration Guide

BDAC Biota Dose Assessment Committee

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CFR Code of Federal Regulations

CV coefficient of variation

D absorbed dose

H dose equivalent

DOE U.S. Department of Energy

DQO data quality objectives

EE/CA engineering evaluation/cost analysis

EH DOE’s Office of Environment, Safety, and Health

EMS Environmental Management System

EPA U.S. Environmental Protection Agency

IAEA International Atomic Energy Agency

ICRP International Commission on Radiological Protection

K_d solid/solution distribution coefficient

M&O management and operating (contractor)
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCRP</td>
<td>National Council on Radiation Protection and Measurements</td>
</tr>
<tr>
<td>NEA</td>
<td>Nuclear Energy Agency</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>NOAEL</td>
<td>No Observed Adverse Effects Levels</td>
</tr>
<tr>
<td>NRC</td>
<td>U.S. Nuclear Regulatory Commission</td>
</tr>
<tr>
<td>NRDA</td>
<td>Natural Resource Damage Assessment</td>
</tr>
<tr>
<td>PRA</td>
<td>population-relevant attribute</td>
</tr>
<tr>
<td>QA</td>
<td>quality assurance</td>
</tr>
<tr>
<td>QC</td>
<td>quality control</td>
</tr>
<tr>
<td>QF</td>
<td>quality factor</td>
</tr>
<tr>
<td>RBE</td>
<td>relative biological effectiveness</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act</td>
</tr>
<tr>
<td>RI/FS</td>
<td>remedial investigation/feasibility study</td>
</tr>
<tr>
<td>UNSCEAR</td>
<td>United Nations Scientific Committee on the Effects of Atomic Radiation</td>
</tr>
<tr>
<td>USFWS</td>
<td>U.S. Fish and Wildlife Service</td>
</tr>
<tr>
<td>w_t</td>
<td>tissue or organ weighting factor</td>
</tr>
</tbody>
</table>