Oak Ridge IFRC

Modeling of Subsurface U(VI) Bioreduction and Uncertainties

Fan Zhang (ORNL) and Jian Luo (GA Tech)

ERSP Annual PI Meeting
Lansdowne, Virginia
April 21, 2009
Outline

• Background
• Site Characterization
• Batch Bioreduction Model
• Reactive Transport Model
• Discussion
U oxidation state, solubility and mobility

- Under aerobic conditions in natural waters
 - Quite mobile uranyle ion UO_2^{2+} (pH < 5) and various uranyl-carbonate complexes (pH > 5)
- Under anaerobic conditions in aquifers
 - Practically insoluble uraninite UO_2
- Remediation Strategy
 - In-situ microbial reduction of U(VI) to U(IV) under anaerobic conditions
 - Precipitation of practically insoluble uraninite within contaminated aquifers
Enzymatic U(VI) Reduction

- Fe(III)-reducing bacteria (FeRB)
- Sulfate-Reducing Bacteria (SRB)
- Bioremediation Strategy:
 - Biostimulation of indigenous DMRB and SRB in the aquifer for immobilization of U in the aquifer
- Competing electron acceptors: nitrate, Fe(III) and sulfate
Site Characteristics

• Geochemistry
 – Low pH 3.4-3.9
 – High Nitrate ~10g/L
 – High Al, Ca, Mg, Na, and Ni
 – high U : 20 – 50 mg/L in GW & 700 mg/kg in sediments

• Stratigraphy
 – Matrix-fracture interactions
 – Heterogeneous, stratified aquifer

• Hydrogeology
 – Main pathway: unconsolidated intact saprolite
Batch Bioreduction Experiment

- Microcosm tests using three uranium contaminated sediments and groundwater amended with calcium oleate as an electron donor were performed.
- Oleate was degraded by indigenous microorganisms with acetate as a major product.
Batch Bioreduction Model Results

- The rapid removal U(VI) from the aqueous phase was observed associated with sulfate reduction.
- Bioreduction model
 - First order oleate degradation
 - Sulfate and U(VI) reduction using dual Monod rate law
Reactive Transport Model

- Physical transport processes
 - Advection + dispersion
 - Mass transfer between stagnant micro-pores and mobile flow zones
- Biogeochemical processes
 - Equilibrium aquatic geochemical reactions
 - Uranium sorption/desorption
 - Microbial reduction kinetics
Bioreaction Kinetics

- Ethanol injection
- Terminal electron-accepting process
 - Denitrification: 10^3–10^6 cells/ml denitrifiers
 - Ferrihydrite Reduction: 10^2–10^3 cells/ml FeRB
 - Sulfate Reduction: 10^4–10^5 cells/ml SRB
 - U(VI) Reduction
- Biomass in mobile domain
Oak Ridge Area 3 Case

Modeling of Subsurface U(VI) Bioreduction and Uncertainties

Phase I Phase II Phase III

COD pH

SO$_4^{2-}$ HCO$_3^{-}$

NO$_3^{-}$ U(VI)
Discussion

• Uncertainty Parameters
 – Aqueous speciation
 – SCM
 – Bioreaction kinetics
 – Microbial transformations
 Inhibition term \(K_{NO3} / (K_{NO3} + c_{NO3}) \)

• Model improvements
 – Sensitivity analysis to simplify the models
 – Extending to multiple types of biomass