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‘ Permeable reactive barriers
-

In-situ hydrocarbon treatment Source: Powell & Associates

technology Science Services,

o http: .powellassociates.
Granular reactive iron: R e L
degrades chlorinated

organics into non toxic
organic & inorganic
compounds
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Study site: PRB installed at DOE Kansas City plant



Motivation

L

Evaluating PRB
integrity in-situ
(post installation)
— are design
requirements
met?

Remote . ] . 1
monitoring of ’ 6\5\@;3\2 © ’ @sxav;i\% «
long-term M oo o o
reduction in PRB
performance due
to precipitation
and clogging
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Fig. 1: Results of electrical imaging at two locations on
the PRB installation at Kansas City




Polarization at a metallic interface

fixed net surface ‘
~ charge IP mechanisms

— negative ion
<+ positive ion
Mex* redox active ion

IP,: inactive ion related

IP,: redox active ion related
e electron



Electrical parameters as proxy

“indicators of PRB longevity
-

Known Effect of precipitation?
IP magnitude correlated with reduction in IP magnitude
ig;fg)ce area (e.g. Wong, due to reduction in surface

S - atad area of exposed Fe0?
relaxation time correlate : . .
with grain size (e.g. Pelton Increase in relaxation time

et al., 1978; Wong, 1979) as result of increase in
effective grain size

buidby

precipitation



Laboratory measurements on Fe0-

J‘ Ottawa sand columns
]

Low-frequency (0.1-1000 Hz)
electrical measurements as a
function of:

(a) Fe0 surface area per unit pore
volume

(b) electrolyte activity; 0.001-10
mol/L

(c) valence: +1, +2, +3

(d) pH: 1.5-10.5 using 0.01 M
NaNO3

(e) precipitation of iron hydroxides
and iron carbonates

Fisher 40-mesh Fe? particles

NaNO,, NaCl and CaCl electrolytes.
Specfific surface area: Fe?=2.8 m%/g;
Ottawa sand = 0.05 m?%/q)




‘Example datasets

Low-frequency (0.1-1000 Hz) measurements as a
function of NaNO; electrolyte concentration: 5% Fe?
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Cole — Cole parameters: © 0.01 mollL: ¢
P, =5.46 Qm; m = 0.17 ® 0.09molfL: ¢

e 1.00 mol/L: ¢
A 0.09 mol/L: p/p,

7=0.01s;c=0.41

10
Frequency (Hz)




J‘Dispersion models
]

Cole-Cole type:

[p* = complex resistivity; p, = dc
resistivity; m = chargeability; o =
frequency; t = time constant; ¢ =
shape parameter]

o, = 1/pg: conduction

magnitude term —— volumetric electrical properties
m,_, = m/p,: polarization
magnitude ?.erm Mineral surface/electrical double-

T, = 1/pg: Characteristic time of | layer chemistry/redox chemistry
polarization mechanism



Fe% (% of total sample volume)
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L

5% Fe°
(95% sand)
asa
function of
electrolyte
activity and
valence
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Time constant (t) as a function of activity
and valence
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‘Electrical parameters as a function of pH
—

my, (3/m); 04(Sim)
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Spectral changes due to chemically induced

precipitation

_ Formation of (1) Fe(OH), and Fe(OH); (2) FeCO; and Fe2(CO;),

Aﬁﬁﬁﬁﬁﬁiﬁba © 30% Fe pre NaoH

" 21 LA A &3 0 0% Fe post NaOH

A A A g & A70% Fe pre MaOH

i A A & A ‘i " A 70% Fe post NaOH
A % A LAl A 70% Fe post Na,Co,

() po= 4122 0m; m, = 0017 S/m; =, =0.009 5 S/m; c =0.51
2 2= 28.808dm; m, = 0.0285/m; ¢, =0.0245 S/m; c = 0.50
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“ Gouy-Chapman theory
]

Variation of 7, is in 1/x = double layer
part consistent with thickness
Gouy-Chapman C = electrolyte
electrical double concentration
layer model 2 e
= (TVZ e Y T = temperature
ekT N = Avogadro’s number

¢ = dielectric constant
k = Boltzman’s constant
e = electronic charge



S
“- ummary

Integrity evaluation
based on sensitivity of IP
magnitude to Fel surface
area

Future experiments:

Focus is now on precipitation
in column experiments

Self potentials

Measurements during active
TCE degradation

Long-term monitoring
based on sensitivity of IP
magnitude and relaxation
time to precipitation?

Will require accurate
knowledge of solution
chemistry

Imaging?
Borehole probes?



Lithologic characterization
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J‘Closing thought

Induced polarization is the only
geophysical method directly sensitive to
interfacial chemistry

Potential application in monitoring of
precipitation processes in a wide range
of environmental systems****




