Activation Assessment of the SNS STS

I. Remec,
I. I. Popova,
F. X. Gallmeier

Oak Ridge National Laboratory

Third International Workshop on Accelerator Radiation Induced Activation (ARIA’15)

Knoxville, Tennessee, USA
April 15-17, 2015
Outlay

• Introduction
• SNS second target station
• Moderators optimization
• Heating, radiation damage and activation
• Final remarks
Introduction
Second target station

- short (<1 μs) proton pulses
- 1.3 GeV protons
- 10 Hz repetition rate
- 466 kW beam power
- stationary compact target W plates cladded with Ta
- beam footprint ~ 30 cm² (90% of the beam)
- 22 instruments projected

STS will be optimized for high intensity and high resolution long wavelength neutron applications.
Second target station

- Stationary plate-type
- 17 plates (Ta clad W)
- 30 cm total length
- 1.5 mm D$_2$O cooling channels between plates
- Plate thicknesses vary to limit peak temperature in plate < 250°C, peak surface temperature < 110°C
Three moderators will provide neutrons to 22 instruments.
Moderator optimization procedure

Main components:

- **MCNPX**
- **Mcnp_pstudy** [1]
- **Run_mcnpx**
- **Optimizer**
 - (optimization routines by Mockus[2])

Moderator optimization

Point detectors used to calculate fluxes at 10 m from the moderators

FOM for coupled moderators

\[
FOM = \int_0^{5\text{meV}} \text{max}_t(\Phi(E, t)) dE
\]

FOM for decoupled moderators

\[
FOM = \int_0^{E_0} \int_{t_o(E)}^{t_o(E)+\Delta t(E)} \Phi(E, t) dt \ dE - \int_0^{E_0} \int_{t_o(E)+\Delta t(E)}^{\infty} \Phi(E, t) dt \ dE
\]

\[
t_o(E) = \frac{\Delta x}{\sqrt{\frac{2E}{m_n}}}
\]

\[
\Delta t(E) = \begin{cases}
\frac{2.5}{E^{0.482}} \mu s & \text{for hydrogen} \\
45 \mu s & \text{for water}
\end{cases}
\]

\[
E_0 = \begin{cases}
10 \text{ meV} & \text{for hydrogen} \\
50 \text{ meV} & \text{for water}
\end{cases}
\]
Optimization parameters for the cylindrical moderator

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBH</td>
<td>39.4</td>
</tr>
<tr>
<td>MBR</td>
<td>41.1</td>
</tr>
<tr>
<td>PMLR</td>
<td>21.4</td>
</tr>
<tr>
<td>PMLB</td>
<td>23.2</td>
</tr>
<tr>
<td>PMLT</td>
<td>21.4</td>
</tr>
<tr>
<td>TZP</td>
<td>-88.0</td>
</tr>
</tbody>
</table>

Viewed moderator faces:
- two 3 cm x 3 cm
- one 3cm x 6 cm
Optimization parameters for the top upstream box moderator

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBMBL</td>
<td>84.0</td>
</tr>
<tr>
<td>CBPMXB</td>
<td>21.1</td>
</tr>
<tr>
<td>CBPMXT</td>
<td>18.4</td>
</tr>
<tr>
<td>CBPMYB</td>
<td>12.6</td>
</tr>
<tr>
<td>CBPMYT</td>
<td>8.48</td>
</tr>
<tr>
<td>CBPML</td>
<td>24.2</td>
</tr>
<tr>
<td>CBPMT</td>
<td>21.4</td>
</tr>
<tr>
<td>CBDZ</td>
<td>0.0, (-37.2)</td>
</tr>
</tbody>
</table>

Viewed moderator face:
- one 5 cm x 5 cm
Optimization parameters for the top downstream decoupled moderator

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCMBL1</td>
<td>21.3, (25.0)</td>
</tr>
<tr>
<td>DCMBL2</td>
<td>22.5, (25.0)</td>
</tr>
<tr>
<td>DCMVD</td>
<td>8.96</td>
</tr>
<tr>
<td>DCDY</td>
<td>10.1, (4.89)</td>
</tr>
<tr>
<td>DCDZ</td>
<td>16.2, (13.2)</td>
</tr>
</tbody>
</table>

Viewed moderator face:
- one 7 cm x 7 cm (H₂O)
- one 7 cm x 7 cm (H₂)
STS coupled para-H$_2$ moderators exhibit ~13 to 10 times higher brightness relative to the FTS coupled moderators (FTS at 2 MW).
STS decoupled moderator:
- para-H_2 moderator ~ 3 times
- H_2O moderator ~ 4 times
higher brightness relative to the FTS decoupled moderators (FTS at 2 MW).

STS decoupled moderators are not in optimal location.
Cooling with D$_2$O possible; with flow velocity \sim 10m/s, and plate peak temperature \sim 250 °C (inside) and \sim 110°C at the surface. Exit pressure \sim 3 bars provides adequate margin from boiling.
Heating rates around STS target

At > 0.001 W/cc active cooling is needed
Dpa rate in steel; vertical cut through STS

Red isoline marks the region of 10 dpa per 40 years of operation (for steel)
Dpa rate in target beam window (stainless steel)

Proton:
Max. 5.41 dpa/y

Neutron:
Max. 5.72 dpa/y

Estimated target window lifetime ~ 11 months (at 5000 h/year)
Aluminum proton beam window: He production rate and dpa rate

Max. He production rate: ~ 890 appm/y;
Estimated lifetime: 2.3 years;
Neutron contribution negligible

Max dpa rate: 1.54 dpa/y;
Estimated lifetime: 26 years;
Neutron contribution $\sim 12\%$.
Burnup of Cd decoupler and poison plates

Estimated lifetime:
side decoupler ~3.2 years;
poison plate ~4.6 years;
1 mm Cd assumed

Simple estimates based on initial burnout rate only.
Target decay heat rate versus decay time

Decay heat is high, dominated by tantalum at \(t > \sim 12 \) minutes

![Graph showing decay heat rate versus decay time with different materials and decay times.

Target:
- tungsten 23.6 kg
- SS 17.1 kg
- tantalum 2.7 kg

Decay heat:
- 500 W at \(\sim 97 \) d
- 300 W at \(\sim 220 \) d

Oak Ridge National Laboratory
Gamma-ray source intensity versus decay time

Tantalum dominates gamma-ray source intensity at $t > \sim 1$ minute
Target hazard relative to DOE Cat-3 threshold

Dominant contribution from tungsten at all times.

Graph showing the fraction of DOE CAT-3 over decay time (s). The graph includes lines for Total, Tungsten, Tantalum, Tungsten + Tantalum, and Stainless Steel Shroud, with key points marked at 1 minute, 1 hour, 1 day, 1 month, and 1 year.
Final remarks

• Preparatory work for STS at SNS is proceeding well

• For the STS considerably higher moderator brightness is predicted at 0.477 MW operation relative to the FTS at 2 MW
 • Coupled moderators ~ 10 - 13 times higher brightness
 • Decoupled moderators ~ 3 - 4 times higher brightness
 • Instrument requirements will drive final moderator design
 • Advance moderator concepts may be included

• Based on radiation damage to the target window the target lifetime is ~ 11 months
 • Radiation damage to tantalum and tungsten likely not limiting, but will be considered in future work

• Decay heat and radionuclide inventory of the spent target is much higher than for FTS
 • Despite small mass Ta dominates target decay heat and gamma-ray source