Lepton Number violating Decays: Theoretical and experimental Challenges

Manfred Lindner

Knoxville, TN, July 29-31, 2016
Neutrino Masses: New Physics...

Simplest possibility: assume 3 right handed singlets \((1_L) \)

\[
\begin{align*}
\nu_L \ g_N \ & \nu_R \\
\nu_R \ & \nu_R \\
\langle \phi \rangle = & \nu
\end{align*}
\]

\(\mathcal{L} \)

- Majorana mass = scales
- lepton number violation

+9+ new ingredients: \(\Rightarrow \) SM+

6x6 block mass matrix

block diagonalization

\(M_R \) heavy \(\Rightarrow \) 3 light \(\nu \)'s

Or: **add scalar triplets** \((3_L) \)

or **fermionic** 1\(_L\) or 3\(_L\)

\(\Rightarrow \) left-handed Majorana mass term:

\[
\begin{pmatrix}
\nu_L \\
\nu_R \\
\nu_R \\
\nu_R
\end{pmatrix}
\]

\[
\begin{pmatrix}
0 & m_D \\
m_D & M_R
\end{pmatrix}
\]

\[
\begin{pmatrix}
\nu_L \\
\nu^c_L
\end{pmatrix}
\]

\(M_LLL^c \)
Both ν_R and new singlets / triplets:

\Rightarrow see-saw type II, III

$$m_\nu = M_L - m_D M_R^{-1} m_D^T$$

Higher dimensional operators: $d=5, \ldots$

Radiative neutrino mass generation

SUSY, extra dimensions, \ldots

\Rightarrow neutrino masses can/may solve two of the SM problems:

- see-saw \Rightarrow leptogenesis as best explanation of BAU
- keV sterile neutrinos as excellent warm dark matter candidate
even for $\nu_R \Rightarrow$ BSM physics \leftrightarrow often connections to LFV, LHC, DM
Majorana Masses well motivated

⇒ Lepton Number Violation

⇒ Neutrinoless Double Beta Decay

Warning:

1) All we know is two Δm^2 and three mixing angles, no CP phase (yet)
 ⇒ uncertainties and unknown parameters in 3 flavour picture
 ⇒ which mass mechanism? how many right-handed fields? …???
2) Be careful about the reverse reasoning…: $0\nu\beta\beta$ ⇒ Majorana…
The Standard Picture of Double Beta Decay

$2\nu\beta\beta$ decay seen for diff. isotopes (Kirsten,…)
$T^{1/2} = O(10^{18} - 10^{21} \text{ years}) \Rightarrow \text{up to } 10^{11} \otimes T_{\text{Universe}}$

$0\nu\beta\beta$ decay

$2\nu\beta\beta$ decay

T$^{1/2} > O(10^{25} \text{y})$

- observe $2\nu\beta\beta$
- look for $0\nu\beta\beta$ signal at $Q_{\beta\beta}$
- large amount of ^{76}Ge nuclei
- extreme low backgrounds!

\Rightarrow signal = Majorana mass
Special nuclei:
• single β decay energetically forbidden
• double β decay allowed

$Q_{\beta\beta} = 2039$ keV

Odd-odd
Even-even

Important: Isotopes with forbidden single β decay

76Ge: Only double β decay \rightarrow SM: $2\nu + 2e^-$ *OR* $2e^-$

Further double beta isotopes…
\(m_{ee} : \text{The Effective Neutrino Mass} \)

\[
m_{ee} = |m_{ee}^{(1)}| + |m_{ee}^{(2)}| \cdot e^{i\Phi_2} + |m_{ee}^{(3)}| \cdot e^{i\Phi_3}
\]

- \(|m_{ee}^{(1)}| = |U_{e1}|^2 m_1 \)
- \(|m_{ee}^{(2)}| = |U_{e2}|^2 \sqrt{m_1^2 + \Delta m_{21}^2} \)
- \(|m_{ee}^{(3)}| = |U_{e3}|^2 \sqrt{m_1^2 + \Delta m_{31}^2} \)

Comments:
- two cases: NH and IH
- includes current exp. errors
 - some improvements
 - missing: CP phases, NH/IH
 - picture complete?
- NMEs → unavoidable theory errors
- Lower bound for IH:
 \[
 \frac{1}{\sqrt{\Delta m^2_{A} c^2_{13} \cos 2\theta_{12}}} \Rightarrow \sqrt{\Delta m_{31}^2} \geq \frac{m_{0}}{1-t_{13}^2-2s_{13}^2 t_{13}}
 \]
 ↔ fully test IH case: \(\sim \) few meV

ML, Merle, Rodejohann
Recently: New results from
- KamLAND-Zen
- GERDA-II
- Majorana demonstrator

⇒ reaching IH !?

⇒ new projects to cover IH
- big, expensive, long-term…
- log scale plot
- uncertainties, other information

⇒ how robust? other opportunities?
Robustness #1: Improved ν parameters

neutrino parameter measurements \rightarrow improved precision

\Rightarrow positive: better know lower bound for IH
\Rightarrow negative: IH may be excluded in a few years
The absolute Neutrino Mass

- Waiting for KATRIN ➔ data taking to start 2016/2017 ➔ factor 10 improvement to ~ 0.2 eV ➔ and then? PROJECT 8 and other developments…

- Cosmology and the sum of neutrino masses:

 \[
 \begin{align*}
 \text{NH: } & 0.06 \text{ eV} \\
 \text{IH: } & 0.12 \text{ eV} \\
 \Sigma(m_i) & \leq 0.14...0.20 \text{ eV}
 \end{align*}
 \]

 ➔ IH seems to become a bit disfavoured by cosmology ➔ the same (weak) trend seems to appear in global oscillation fits

 ➔ if real ➔ very important for $0\nu\beta\beta$ experiments
Robustness #2: NMEs
For a Majorana mass $\Delta L=2$ process

2 Neutrons (in one nucleus) \Rightarrow 2 protons + 2 electrons $\iff (Z,N) \Rightarrow (Z+2,N)$

\Rightarrow 2$^{\text{nd}}$ order weak process \Rightarrow extremely rare….

transition time $O(10^{25} \text{ Jahre})$ $\iff \mathcal{T}_{\text{Universum}} = 1.3 \times 10^{10} \text{ Jahre}$

\Rightarrow reasonable rate \Rightarrow large amount of some special isotope

\Rightarrow rare \Rightarrow enormous suppression of all sort of backgrounds

\Rightarrow non-perturbative problem: nuclei are bound states!
NME’s: Relating Lifetimes & Neutrino Masses

\[\frac{1}{\tau} = G(Q, Z) |M_{\text{nucl}}|^2 <m_{ee}>^2 \]

rate of $0\nu\beta\beta$

nuclear matrix elements:

- virtual excitations of intermediate states

\[0^+ + 1^+ + 2^- \]

nuclear matrix elements:

\[
\begin{align*}
\text{phase space} & \quad \text{nuclear matrix elements} & \quad \text{effective Majorana neutrino mass} \\
\text{rate of } 0\nu\beta\beta & \quad \text{virtual excitations of intermediate states} & \quad \text{effective Majorana neutrino mass}
\end{align*}
\]

progress in TH errors

- which NME is correct?
- but: what is a 1σ theory error?
- experimental cross-checks of TH!

M. Lindner, MPIK
Robustness #3: g_A quenching?
Quenching

Half-life: \[T_{1/2}^{-1} = m_{\beta\beta}^2 G^{0\nu} g_A^4 |M^{0\nu}|^2 \]

Axial-vector coupling \(g_A \):
- Free nucleon: \(g_A \approx 1.27 \)
- Comparison of \(\beta \) and \(2\nu\beta\beta \) decay with theory: \(g_A \approx 0.6 - 0.8 \)
- Needs further studies
- If applicable to \(0\nu\beta\beta \)
 - reduced of sensitivity
 - potentially big impact: \((g_A)^4 \)
Robustness #4: Beyond minimal Szenario
More general: L Violating Processes

SM

$2\nu\beta\beta$

BSM

$T^{1/2} > O(10^{25} y)$

$0\nu\beta\beta$

...interpretation changes:

Search unchanged…

$0\nu\beta\beta$ decay

$2\nu\beta\beta$ decay
Other Double Beta Decay Processes

Standard Model:

\[\nu_{\beta\beta} \rightarrow 2 \text{ electrons} + 2 \text{ neutrinos} \]

Majorana \(\nu \)-masses or other \(\Delta L=2 \) physics:

\[\nu_{\beta\beta} \rightarrow 2 \text{ electrons} \]

- Majorana neutrino masses \(\leftrightarrow \) Dirac?
- SM + Higgs triplet
- SUSY
- Important connections to LHC and LFV ...
- Sub eV Majorana mass \(\leftrightarrow \) TeV scale physics
Interference of $\Delta L=2$ Operators

Usually
\[
(T_{1/2}^{0\nu})^{-1} = \left(\frac{|m_{0\nu}/m_e|}{m_e}\right)^2 |\mathcal{M}_{}^{0\nu}|^2 G^{0\nu}.
\]

with interferences
\[
(T_{1/2}^{0\nu})^{-1} = |m_{0\nu}/m_e M_{}^{0\nu} + \epsilon m_e M_{}^{\epsilon}(M_{}^{0\nu})^{-1}|^2 \frac{G_{int}}{m_e^2} \\
= |(m_{0\nu}/m_e M_{}^{0\nu} + \epsilon m_e M_{}^{\epsilon}(M_{}^{0\nu})^{-1})M_{}^{0\nu}|^2 \frac{G_{int}}{m_e^2} \\
= |m_{int}/m_e|^2 |M_{}^{0\nu}|^2 \frac{G_{int}}{m_e^2},
\]

\[G_{int} = \epsilon m_e M_{}^{\epsilon}\]

= overall phase space factor
\[\leftrightarrow\] determined by parameters of new physics

\[m_{int} = m_{0\nu}/m_e M_{}^{0\nu} + \epsilon m_e M_{}^{\epsilon}(M_{}^{0\nu})^{-1} \equiv m_{0\nu}/m_e + m_\epsilon.\]

\[m_\epsilon \sim (\Lambda_{new})^{-5}\]

\[m_{0\nu}/m_e = 1 \text{ eV} \leftrightarrow \Lambda_{new} \sim \text{TeV}\]
Extreme Cases

m_{ee} from Majorana neutrinos only and no other $\Delta L=2$ physics

m_ϵ from other $\Delta L=2$ physics with Dirac neutrino masses

and anything in-between
interferences
growing m_ϵ for fixed $0\nu\beta\beta$
\rightarrow shifts of masses, mixings and CP phases
\rightarrow destroys ability to extract Majorana phases
\rightarrow sensitivity to TeV
The Schechter-Valle Theorem induced Mass

- any $\Delta L = 2$ operator which leads to $0\nu\beta\beta$ decay induces via loops a Majorana mass \Rightarrow must ν's be Majorana?
- assume a $0\nu\beta\beta$ signal \Rightarrow how big is the induced mass?

4 loops \Rightarrow $\delta m_\nu = 5 \times 10^{-28}$ eV \Rightarrow extremely tiny (academic)
\Rightarrow cannot explain observed ν masses and splittings
\Rightarrow explicit Dirac neutrino mass operators required

Extreme possibility:
- $0\nu\beta\beta = L$ violation = other BSM physics
- neutrino masses = Dirac (plus very tiny correction)
CON: Cosmology / BBN
→ how many light sterile \(\nu \)'s allowed? (thermalized? LAU? …)
+/- how many \(\sigma \)'s required? +/- systematics (H\(\leftrightarrow \)N\(_{\text{eff}}\))
→ pushing it: at most 1,2 steriles …

PRO: Various hints for sterile neutrinos
Reactor anomaly, LSND, MiniBooNE, MINOS, Gallex…
→ hints for light sterile \(\nu \)'s? → not all; one would be enough
→ new and better data / experiments are needed
Sterile neutrinos solve problems:
- keV sterile \(\nu \) is an excellent warm dark matter candidate
- avoid small scale crisis of CDM
- leptogenesis as explanation of BAU
- TeV-ish sterile \(\nu \)'s improve overall EW fits!

theory: natural explanation for light sterile \(\nu \)'s with small mixings
Light sterile ν’s \Rightarrow modified See-Saw

Grimus, Lavoura; Hettmansperger, ML, Rodejohann; ...

The usual see-saw equations are an approximation:

$\tilde{m}_\nu = -m_D^T M_R^{-1} m_D$
$\tilde{M}_R = M_R$

\rightarrow ‘expansion’ in m_D/M_R
\rightarrow OK if all elements of $m_D << \min(\text{eigenvalues of } M_R)$

Important corrections to usual see-saw relations if
- $M_R @\text{TeV scale} \leftrightarrow m_D/M_R$ makes relevant corrections
- light sterile neutrinos \leftrightarrow some small eigenvalues of M_R

\Rightarrow two ways to go:
1) ‘boundary shifting’
2) NLO and NNLO terms in see-saw expansion
Boundary Shifting

\[
\mathcal{M}_\nu = \begin{pmatrix}
0 & m^{e\mu}_L & m^{e\tau}_L \\
m^{e\mu}_L & 0 & 0 \\
m^{e\tau}_L & 0 & 0 \\
m^{e1}_D & 0 & 0 \\
0 & m^{\mu2}_D & m^{\tau2}_D \\
0 & m^{\mu3}_D & m^{\tau3}_D \\
\end{pmatrix}
\begin{pmatrix}
m^{e1}_D & 0 & 0 \\
0 & m^{\mu2}_D & m^{\mu3}_D \\
0 & m^{\tau2}_D & m^{\tau3}_D \\
\end{pmatrix}
= \begin{pmatrix}
(4x4) & (2x4) \\
(4x2) & (2x2)
\end{pmatrix}
\]

\[
\text{det}(M_{ij}) = 0 \implies M_1 = 0
\]

- Use standard type II see-saw relation for 4x4, 2x4, 4x2 and 2x2 matrices
- ~ expansion
Define: \[A \equiv m_D m_D^\dagger (M_R^*)^{-1} \quad X \equiv A + A^T \]

\[
\tilde{m}_\nu = -m_D^T M_R^{-1} m_D + \frac{1}{2} m_D^T M_R^{-1} X M_R^{-1} m_D
\]

\[
\tilde{M}_R = M_R + \frac{1}{2} (A + A^T)
\]

\[
\tilde{m}_\nu^{\text{NNLO}} = \frac{1}{2} m_D^T M_R^{-1} \left[\frac{1}{4} A M_R^{-1} A + \frac{1}{4} A^T M_R^{-1} A^T + \frac{1}{2} A^T M_R^{-1} A + \frac{1}{2} (M_R^*)^{-1} A^* A^T
\]

\[+ \frac{1}{2} A A^\dagger (M_R^*)^{-1} + A A^* (M_R^*)^{-1} + (M_R^*)^{-1} A^\dagger A^T \right] M_R^{-1} m_D,
\]

\[
\tilde{M}_R^{\text{NNLO}} = -\frac{1}{2} \left[A A^* (M_R^*)^{-1} + (M_R^*)^{-1} A^\dagger A^T + \frac{1}{4} A M_R^{-1} A + \frac{1}{4} A^T M_R^{-1} A^T \right].
\]

\(\Rightarrow 0\nu\beta\beta\) effective neutrino mass modified by the existence of light sterile neutrinos

Hettmansperger, ML, Rodejohann: double, inverse, linear, singular see-saw, … other cases
Recently: New results...

Plot assumes
- certain NMEs
- vanilla 3 flavour
- pure Majorana mass
- \(g_A = 1.27 \)
- no other L violation

IH getting less likely from cosmology and global fits

Experimental effort: Opportunity ↔ cost, time, ... risks
The experimental Challenge
Sensitivity & Background (for a Majorana Mass)

\[(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z) \left| M_{0\nu} \right|^2 m_{\beta\beta}^2 \]

\[m_{\beta\beta} = \left| \sum_i U_{ei}^2 m_i \right| \]

without background

\[N = \log 2 \cdot \frac{N_A}{W} \cdot \varepsilon \cdot \frac{M \cdot t}{T_{1/2}^{0\nu}} \]

- \(N_A \) = Avogadro’s number
- \(W \) = atomic weight of isotope
- \(\varepsilon \) = signal detection efficiency
- \(M \) = isotope mass
- \(t \) = data taking time

\[m_{\beta\beta} = \sqrt[4]{\frac{N}{\varepsilon M t}} \]

with background

\[N' = N + N_{\text{background}} \]

\[m_{\beta\beta} = K_2 \cdot \sqrt{1/\varepsilon} \left(\frac{c \, \Delta E}{M t} \right)^{1/4} \]

- \(c = \text{cts/keV/kg/yr} \)
- \(\Delta E = \text{ROI} \)

M. Lindner, MPIK
Two Directions

with background

\[N' = N + N_{\text{background}} \]

\[m_{\beta\beta} = K_2 \sqrt{\frac{1}{\varepsilon}} \left(\frac{c \Delta E}{Mt} \right)^{1/4} \]

\(c = \text{cts/keV/kg/yr} ; \Delta E = \text{ROI} \)

biggest possible mass \(M \)
\(\rightarrow \) less energy resolution
\(\rightarrow \) nearby background lines?
\(\rightarrow \) LS, …

smallest resolution \(\Delta E \)
\(\rightarrow \) less mass for sensitivity
\(\rightarrow \) less risk for unknown bgd
\(\rightarrow \) Ge, …

in common:
- minimize background level \(c \)
- long running times \(\leftrightarrow \) stability
- expensive

Question: Affordable path to large \(m \), excellent \(\Delta E \), low bckgd?
GERDA (and Majorana): Lowest ΔE

The required background level:

typical material 30Bq/kg $\sim 10^{12}$ cts/ton/year

GERDA-I
100-1000 cts/keV/ton/year

\times 100
1-10 cts/keV/ton/year

$0.01-0.1$ cts/keV/ton/year

$0.001-0.01$ cts/keV/ton/year

\Rightarrow how low can it become?
The Fight against Background

Extreme rare reaction (T>10^{25} years >> age of Universe)
Magnitude 1 decay/kg/year
Environment ~ 30Bq/kg = 10^9 /kg/year \(\Rightarrow\) 3000/person/second

- avoid single \(\beta\) decay \(\Leftarrow\rightarrow\) suitable isotopes
- avoiding / suppression of environmental radioactivity

- in the 0\(\nu\)\(\beta\)\(\beta\) detector material
 - ultra clean (production, handling)
 - puls form analysis (identify & reject background)

- in the detector parts (e.g. holders, signal amplifiers)
 - lowest amount of material
 - ultra pure materials (selection; environment = O(100Bq/kg) \(\Leftarrow\rightarrow\) \(\mu\)Bq/kg)
 - extremely helpful: \(^{76}\)Ge source = detector (a big Ge diode)

- in the environment
 - ultra clean room (clean room, …)
 - avoid Radon (decay of U, Th in the environment \(\Rightarrow\) \(^{222}\)Rn-gas)
 - avoid cosmogenic activation (new isotopes \(\Rightarrow\) go underground)
 - avoid cosmogenic myons, neutrons \(\Rightarrow\) go underground
\(\gamma \) and Rn Screening Facilities

- \(\gamma \)-screening stations (1mBq/kg) @MPIK underground lab
- 4 GEMPIs (10\(\mu \)Bq/kg) @LNGS
- New: GIOVE (50\(\mu \)Bq/kg) @MPIK
- extensive task for GERDA and other experiments (XENON, ...)

\(Rn \) Screening Facilities \(\leftrightarrow \) \(^{222}\)Rn emanation:

Gas counting systems (LNGS, MPIK)
sensitivity = few atoms/probe
- typ. sensitivity: few \(\mu \)Bq/m\(^2\)

ICPMS: ...
Extreme Radiopurity Requirements

- Materials have unavoidably impurities of unstable elements
 - select cleanest raw materials
 - screening
- Processing can clean materials, but also introduce new impurities
 - careful planning & screening
- Transport and activation
 - go underground
- Rn emanation from U and Th in all materials → Rn222 decays…
 - …
- …

Further improvements are very challenging and there are limitations
GERDA Phase I achievement

EPJ C74 (2014) 2764

- various identified backgrounds
- excellent energy resolution
 ➔ tiny ROI (green band)
 ➔ eliminates many backgrounds
 ➔ unprecedented BI

➔ background index (BI) after pulse shape discrimination

\[
BI = 1.0(1) \times 10^{-2} \frac{\text{counts}}{\text{keV kg yr}}
\]
GERDA Phase II

- add more new BEGe detectors ➔ ~factor 2 in 76Ge mass
- add active veto (light instrumentation) ➔ improved background suppression
 ➔ BI goal: 10-3 counts/(keV kg yr)
- ➔ go for O(100-200kg*yr) exposure

unexpected 42K background
Light Instrumentation for Phase II

transparent nylon cylinder coated with wave length shifter \(\Rightarrow\) avoid drifting of 42K in field

\(\Rightarrow\) phase II: first results
LI works nicely: ^{228}Th Suppression

GERDA preliminary May 2015

228Th calibration run
- anti-coincidence cut (AC)
- AC + PSD
- AC + LAr veto
- AC + LAr veto + PSD

count/s/5 keV

detectors:
4/C, 1/D, 79C, 02B, 35B

energy [keV]

energy [keV]
GERDA Phase II first Results

- DEP events used as proxy for $0\nu\beta\beta$
- signal efficiency: $87.3 \pm 0.9\%$
- $2\nu\beta\beta$ acceptance: $85.4^{+1.9}_{-0.8}\%$

![Graph showing energy distribution and different cuts](image_url)
GERDA Phase II first Results

BEGe, 5.826 kg yr
- before PSD + LAr
- after LAr
- after LAr + PSD

background region

<table>
<thead>
<tr>
<th>Description</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>total # counts in background region</td>
<td>25</td>
</tr>
<tr>
<td>after LAr</td>
<td>7</td>
</tr>
<tr>
<td>after PSD</td>
<td>5</td>
</tr>
<tr>
<td>after LAr + PSD</td>
<td>1</td>
</tr>
</tbody>
</table>

after PSD + LAr veto

\[BI = 0.7^{+1.1}_{-0.5} \times 10^{-3} \frac{counts}{keV \cdot kg \cdot yr} \]

after PSD + LAr veto
no events left at \(Q_{\beta\beta} \)
Going to huge Detectors…

Limit setting

Testing IH
\[\Rightarrow 17 \text{ meV} \]
\[\Rightarrow \sim 10^{28} \text{y} \]

Effort:
- \[1 \text{ty} = 200 \text{kg} \times 5 \text{y} \]
- \[10 \text{ty} = 1 \text{t} \times 10 \text{y} \]

enrichment lead time:
\[O(100) \text{ kg/y} \]

\[\Rightarrow \text{bgd for ton?} \]
\[\Rightarrow \text{by then the MH should be known and may be NH…} \]
The Value of small ΔE

expected bg from interpolation: 5.1 events w/o PSD
2.5 events with PSD
Good energy resolution is important \Rightarrow less mass, avoids unknown backgrounds \Rightarrow $0\nu\beta\beta$ experiments with big mass and less resolution may see H.O. nuclear lines!
Summary

- Lepton number violation is a very important topic!
- Goes beyond neutrino masses
- Very big new \(0\nu\beta\beta\) experiments \(\rightarrow\) search for L-violation
 - ... are very hard (ultra low background)
 - ... and expensive (large quantities of very special material)
 - ... will take many years (complexity, R&D)
 - ... while expectations will change:
- LHC results/limits \(\leftrightarrow\) ν mass terms (SUSY, \(W_R\), nothing)
- Sterile neutrinos may be confirmed
- The mass hierarchy will be known
- Other L-violation?
- Nuclear physics uncertainties
 - the few meV goal
 - Is uncertain and very hard to reach