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Resonances in *Al(p,y)*°Si

* Why resonances in #°Si are of interest
e Literature review

e Reanalysis — why and how

« Adopted values

« Open questions
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Beginning from the observation of an Why 2¢Si matters... the observable °Al
anomalous “°Mg isotopic ratio in the

Allende meteorite, ?°Al has been the target
of multiple space-based instruments
(HEAO, COMPTEL, INTEGRAL) over the
past several decades

CGRO | COMPTEL 1.8 MeV, 5 Years Observing Time

The direct observation of 2°Al decay, via its
characteristic 1.809 MeV gamma ray, is
particularly important — and useful —
because of the properties of this
radioactive isotope:

- Its lifetime (~700,000 years) is long
enough to outlast the length of an

astrophysical explosion, but much shorter e open g
than the age of typical stars or the galaxy
" o S
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— |t can be tracked as it moves through

the interstellar medium | So now the important question: how is the
— since the flux is reasonably constant, it observable Al produced?
must be actively produced in the universe

in order for us to observe it OAK RIDGE

National Laboratory



Production of %¢Al

— Only the ground state produces the 1.809 MeV y-ray; isomer does not
- 2Al(p,y)?°Si capture reaction in bypass sequence considered one of three main
uncertainties in novae nucleosynthesis

26Si 27Si 28Si 26Si 27Si 28Si
A
26Alm 26Alm
25Al 27Al - 25Al \ 27Al
26Al 26Al
26Mg* OSSI 26Mg*
24Mg 25Mg 24Mg 25Mg
26Mg *26Mg
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Current state of knowledge

Resonance: — A B C D E
Measurement: | E, JTE, E, J7 E, E, JT E, E, J7 E. E, JT E,
Compilation [35] 5517.8 + 04* 4t 4" 5677.04+1.7 1t 163.2" 589244 378.2"  5913.84+2.0 3 400° 59459+ 40 0 432.1"
*#Si(p.t) [13] 5562 + 28 5960 + 22

*Mg(*He,n) [14] 5910+ 30° 0" +(4*)

2Si(p.t) [15] 551545 (4") 5916 +£2 ot

*Si(*He.*He) [16] 5526 + 8 41 5678 + 8§ 5045+ 8 3

P decay [17] 5929 + 5 41242

*Mg(*He,n) [18] 5515+ 4 5670 + 4 5912 +4 3t 5046 +4 O
88i(*He.5He) [20] 5892 +4

Pe('*0,2n) [22] 55172405 41 5677.0+ 1.7 1°

8Si(*He.*He) [24] 5508 + 3 5918 + 8

S Al(d.n) [26]¢ 360 £ 70 (360 + 70)
*Mg(*He,ny) [27]" 5517 5677 5888 +2

*#Si(p.t) [28] 5517.2+16 41 5921 + 12 3t 5944 +20 0

*#Si(p.t) [29] 5516 + 3 5927 + 4 3t 413+ 4

TSi(p.d) [30] 5511 +£10 5659 + 22

*p decay [6] 5928.7 + 0.6# 3 414.9 4+ (.68

“Mg(*He,ny) [32] 55178+ 1.1 4 5673.6 1.0 1° 5800.0+1.0 0

“Mg(*He.ny) [33] 5517.0+0.1  4° 56759+ 1.1 1° 5800.1 £0.6 0

“ENSDF lists the level as 5513.8 £ 0.5 keV, but then specifies that this value corresponds to the adopted proton emission threshold from the 2012 Atomic Mass Evaluation [41], and

determines the least-squares fit to 3 data gives the value listed in this Table [35].

YDerived from ENSDF S, value of 5513.8 £ 0.5, which is adopted from the AME2012 value [41].
“Reported in Ref. [14] as 5.91 MeV with “20 or 30 keV"™ uncertainty.

In a later publication [21], additional data plus a new DWBA analysis led to an assignment for this level of 3",

¢Ref. [26] reported a proton decay Q value of 0.36(7) MeV for the first £ = 0 level about the proton threshold, consistent with either Resonance D or E. They assign 3" to Resonance D
based on the interpretation from Ref. [18].
"It is unclear from Ref. [27] whether the authors measure the values given for Resonances A and B, or whether they are giving the values used in their calibration. Uncertainties of 42 keV
are adopted in this work, for consistency with their third level energy.
¢Ref. [6] gives the uncertainty on the excitation energy as +0.6(srar) £ 0.3(svs) £ 0.3(l/irerature) and on the resonance energy as +0.6(star) & 0.3(sys) £ 0.6(literarure).
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Why data evaluation matters

— High-resolution gamma spectroscopy data in 2007 (reanalyze earlier data with better-known levels
for calibration)

— High-resolution mass measurement in 2009 (reanalyze earlier data with better-known Q-value)

— Propagation through the literature of incorrect values (reanalyze earlier data for more meaningful
comparisons)

— Potential issues are brought to light: why are there two 0* states when only one is expected?

There's a lot of data out there, but it hasn't been compared/combined in a rigorous way
(last time it was done for this reaction was by Chris Wrede in 2009...
Six years and over a dozen publications ago!)

Also worth noting: ENSDF folks can only work with what you give them... evaluators have a tough job
already, so let's not make it tougher by leaving out information they might need
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The reanalysis...

— For transfer data, the
excitation energies were
recalibrated using a
“*known” set comprised
of the Seweryniak 2007,
Bennett 2013, and
Doherty 2015 data

— For decay data,
resonance energies
were recalibrated using
a “known” value derived
from the updated, high-
precision mass
measurements of
Eronen 2009 and
Kwiatkowski 2010
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The reanalysis...

Changes in resonance energy
can have huge effect
(exponential)

- For example, W.A. Richter
calculation: a 6 keV change In
the 3* resonance energy
results in a 30% change in the
reaction rate

- Many of the data in the
reanalysis had larger shifts
than this (and larger
uncertainties!)

1_5 LI L I L Li L L I’ LI L L 'I' LI L L 'I L] L Li Li I L LI |
! (a) -
ke - -
0.5
i (b) ,- W.A. Richter,
3 —
PRC84, 059802
2 ) (2011)
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log,,(T9)

FIG. 1. (a) The new rate (B) divided by the old rate (A) of Ref. [2].
(b) The new rate (B) divided by the rate given in the 2010 evaluation
(Table B.37 of Ref. [4]); the solid line 1s for the median rate and the
dashed lines are for the low and high rates. OAK RIDGE
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Adopted values

— Weighted averages give Ex, combined with better Q value gives Er

— Bulk of evidence gives spin assignment

Resonance: A B C D E

E, (keV) 5517.3+0.8 5675.2+ 1.4 5890.0+0.8 5927.6+1.0 59497 +5.3

Jr 4% 1 (07) 37 (43.,0;)

E, (keV) 3.5+09 161.4+1.5 376.2+1.0 4138+ 1.1 4359+5.3

Refs. included [15,16,18,22,24,27-30,32,33] [16,18,22,27,32,33,43] [20,27,32,33] [6,14,15,17,18,24,28,29] [16,18,28]
ENSDF values: 5517.8 +/-0.4 5677.0 +/- 1.7 5892 +/- 4 5913.8 +/- 2.0 59459 +/- 4.0
Difference: ~0.5 keV ~2 keV ~2 keV ~14 keV ~4 keV

OAK RIDGE

National Laboratory



Missing pieces

Which 0* is the real 0*? Or are both real?
— expect a single 0* level and two 4* levels...
— seem to have two O* levels and one 4* level
— IS mixing from a higher shell involved?

Need more data on partial widths/resonance strengths of these resonances
— no partial widths or resonance strengths exist for four out of five resonances
— calculated strengths exist, but using conflicting information

Need to lower uncertainties on direct capture component of reaction rate as well

OAK RIDGE
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Assignment of 0* to Resonances C&E
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- Both measurements were **Mg(°*He,n)... so why

such a discrepancy?

— Another (®He,n) measurement (deSereville) saw
Resonance C but not Resonance E
- Ultimately, there appears to be more evidence for
Resonance C being the 0*

OAK RIDGE
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The 0* Issue

Expect the fourth O* in

this region... so which is
it?

- If the 5890 keV (C)
level is the 0" and 5950
keV (E) is 4%, reaction
rate at lower temps
(~0.2 GK) differs by
14% from the currently
adopted rates in the
literature

— differences in the
reaction rate ultimately
cause differences in the
calculated cosmic %°Al
production

Percent difference
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10

0.2

— Total reaction rate
- = Resonance E contribution
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0.3 0.4 0.5
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What next?

Try harder to get this (and similar) information out there!

- cf. “High-precision mass measurements of Al and *°P at JYFLTRAP,” L. Canete et al,
EPJA 52 pp 124 (2016):

“The spin for the next excited state at 5946 keV is unclear. It has been claimed to be
a 0* [52] as well as 3* [49]. The shell-model calculations [62] suggest it to be 0*...”

Some good news: the information is getting around (2016 ENSDF evaluation includes the
updated level energies! see M.S. Basunia and A.M. Hurst, Nuclear Data Sheets 134, pp 1)

Further studies of 2°Si would benefit from single-nucleon transfer (populates low / states,
reaction mechanism better understood, etc):

— (d,n) proton transfer (J. Baker et al)

— proton scattering

— direct proton capture (A. Chen et al)
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Example: Al(d,n) @ FSU

25A| beam production with RESOLUT } courtesy of Ingo Wiedenhoever T
- Entries 1312

Measure decay+daughter coincidences in F"‘Zg o3 Mean 1267

25 26Qi* _, 25 N : :
Al(d,n)**Si Al+p soF- 005

Observe complex - 1.258

res.-spectrum T

0.427(50) MeV 3 -

0.863(50) MeV 2+/4* S0

1.095(50) MeV ? -

1.258(40) MeV 3 20

Compare cross of

sections to -

25 26 CAi ” I L
Mg(d,p)*°Mg “mirror” reaction 3 N S . ]

The “main” astrophysical 3* resonance is
identified at 0.427(50) MeV ~ Consistent
with Resonance D (closer to reanalysis

value than original literature value) AR RINAR
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Take-home:

— Structure matters to astrophysics

— Careful evaluation matters to everyone
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Thanks

Aaron Hurst

Chris Wrede

Alan Chen

Ingo Wiedenhoever
Michael Smith
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Extras
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A word on how we can improve:

For either the direct proton capture or
single-nucleon transfer, a beam of Al
IS required — probably low intensity

Measurement depends on a dense
hydrogen/deuterium target

Utilize the advantages of a gas jet target!

- dense (10*%-10*° #/cm?)

- pure (fed from cylinder, recirc.)
- uniform

- |ocalized (4-5mm diam)

See Paul Thompson (UTK) poster
...and your conference badge!
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1) An excess of Mg is Why 2°Si matters... the observable *°Al
found in the Allende

meteorite, indicating the

presence of *°Al decay...
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1) An excess of Mg is Why 2°Si matters... the observable *°Al
found in the Allende
meteorite, indicating the

presence of °Al decay = L S A L

> I E = 1,808.72 (+0.19)

© 1.5 FWHM = 1.17 (£0.76)
2) Several space-based T : AR I =3.04 (x0.31)
telescopes (HEAO, S ok -
COMPTEL, INTEGRAL...) :f - | -
observe the characteristic £ | :
1.809 MeV gamma-ray line g 05 _J( J{ 7 ]
of radioactive “°Al... 5 \
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1) An excess of Mg is Why 2°Si matters... the observable *°Al
found in the Allende
meteorite, indicating the
presence of *°Al decay

CGRO ! COMPTEL 1.8 MeV, 5 Years Observing Time
2) Several space-based
telescopes (HEAO,
COMPTEL, INTEGRAL...)
observe the characteristic
1.809 MeV gamma-ray line
of radioactive °Al

3) COMPTEL maps the
1.809 MeV gamma across
the Milky Way galaxy...

Liine Ober lach etal,
Ry 2, 1997

0m 06 033 049 0B 082 0% 114 131 147 163 180 1% 212 229 24 261
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1) An excess of Mg is Why 2°Si matters... the observable *°Al
found in the Allende
meteorite, indicating the
presence of *°Al decay

2) Several space-based
telescopes (HEAO,
COMPTEL, INTEGRAL...)
observe the characteristic
1.809 MeV gamma-ray line
of radioactive 2°Al

3) COMPTEL maps the s 10F
1.809 MeV gamma across < ]
the Milky Way galaxy £ 0°F
N
4) INTEGRAL shows that % g
the sources are near o 5[
massive stars, and that the =
26A| co-rotates with the ¥ -10F .

galactic plane... s o0 =0
Galactic longitude (deqg) DGE

-2 vereavssaess ,_....JOI'ﬂl'OI’y



5) The direct observation of
Al decay is particularly
Important — and useful —
because of the properties of
this radioactive isotope:

- Its lifetime (~700,000
years) is long enough to
outlast the length of an
astrophysical explosion, but
much shorter than the age
of typical stars or the galaxy
(so it's recent)

— It can be tracked as it
moves through the
interstellar medium

— since the flux is
reasonably constant, it must
be actively produced in the
universe in order for us to
observe it

Why 2°Si matters... the observable *°Al

So now the important question: how is the
observable “°Al produced?
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