Spectroscopy of ^{26}F and ^{28}Na to probe proton-neutron forces close to the drip line
Spectroscopy of 26F and 28Na to probe proton-neutron forces close to the drip line

- **Motivations**
 Nuclear interactions close to the drip-line

- **Experimental study of 26F**
 β-decay, unbound by neutron emission state…

- **Experimental study of 28Na**
 probe the same interaction as in 26F in another nucleus

- **Interpretations, conclusions and perspectives**
Spectroscopy of ^{26}F and ^{28}Na to probe proton-neutron forces close to the drip line

- **Motivations**
 - Nuclear interactions close to the drip-line
- **Experimental study of ^{26}F**
 - β-decay, unbound by neutron emission state…
- **Experimental study of ^{28}Na**
 - probe the same interaction than in ^{26}F in another nucleus
- **Interpretations, conclusions and perspectives**
Stability and limits of stability

- Nuclei close to the drip-lines present a strong asymmetry between the binding energies of their protons and neutrons.

- Evolution of the nuclear interactions far from stability?

\[\begin{align*}
\pi & \quad \nu \\
\text{E} & \quad \text{E} \\
\text{Cd} & \quad \text{Cd} \\
48 & \quad 82 \\
130 & \quad 82
\end{align*}\]
Stability and limits of stability

- Nuclei close to the drip-lines present a strong asymmetry between the binding energies of their protons and neutrons.

- Evolution of the nuclear interactions far from stability?

- Light nuclei are good candidates for such studies as the drip-lines appear faster.
Probing the $\pi d_{5/2} \times \nu d_{3/2}$ interaction along the $N=17$ isotonic chain

<table>
<thead>
<tr>
<th></th>
<th>26F</th>
<th>28Na</th>
<th>30Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_n (MeV)</td>
<td>1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>S_p (MeV)</td>
<td>16</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>$S_p - S_n$ (MeV)</td>
<td>15</td>
<td>12</td>
<td>7</td>
</tr>
</tbody>
</table>
Probing the $\pi d_{5/2} \times vd_{3/2}$ interaction along the $N=17$ isotonic chain

<table>
<thead>
<tr>
<th></th>
<th>26F</th>
<th>28Na</th>
<th>30Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_n (MeV)</td>
<td>1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>S_p (MeV)</td>
<td>16</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>$S_p - S_n$ (MeV)</td>
<td>15</td>
<td>12</td>
<td>7</td>
</tr>
</tbody>
</table>

$|5/2 - 3/2| = 1 \leq J \leq 4 = |5/2 + 3/2|$
Probing the $\pi d_{5/2} \times v d_{3/2}$ interaction along the $N=17$ isotonic chain

<table>
<thead>
<tr>
<th></th>
<th>^{26}F</th>
<th>^{28}Na</th>
<th>^{30}Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_n (MeV)</td>
<td>1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>S_p (MeV)</td>
<td>16</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>$S_p - S_n$ (MeV)</td>
<td>15</td>
<td>12</td>
<td>7</td>
</tr>
</tbody>
</table>

$|5/2 - 3/2| = 1 \leq J \leq 4 = |5/2 + 3/2|$

- 1^+: ✓ ✓ ✓ ✓
- 2^+: ✓ ✓ ✓ ✓
- 3^+: ? ✗ ✓ ✓
- 4^+: ✗ ✗ ✓ ✓

$^{26}\text{F}~1^+$: Jurado et al., PLB 649 (2007) 43-48

$^{26}\text{F}~2^+$: Stanoiu et al., PRC 85 (2012) 017303

$^{26}\text{F}~3^+$: Frank et al., PRC 84 (2011) 037302
Spectroscopy of ^{26}F and ^{28}Na to probe proton-neutron forces close to the drip line

- **Motivations**
 Nuclear interactions close to the drip-line

- **Experimental study of ^{26}F**
 \[\beta\text{-decay, unbound by neutron emission state}…\]

- **Experimental study of ^{28}Na**
 probe the same interaction than in ^{26}F in another nucleus

- **Interpretations, conclusions and perspectives**
Study of the unbound by neutron emission states of 26F at GSI (2010)
Study of the unbound by neutron emission states in 26F
Study of the unbound by neutron emission states in ^{26}F

<table>
<thead>
<tr>
<th>E_{res} (MeV)</th>
<th>0.35 (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_{exp}</td>
<td>0.57 (48)</td>
</tr>
<tr>
<td>Γ_{SP}(l=0) (MeV)</td>
<td>3.38</td>
</tr>
<tr>
<td>Γ_{SP}(l=2) (MeV)</td>
<td>0.07</td>
</tr>
</tbody>
</table>
Study of the unbound by neutron emission states in ^{26}F

<table>
<thead>
<tr>
<th></th>
<th>^{26}F</th>
<th>^{28}Na</th>
<th>^{30}Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>1^+</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>2^+</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>3^+</td>
<td>✔</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>4^+</td>
<td>✗</td>
<td>✗</td>
<td>✔</td>
</tr>
</tbody>
</table>

^{40}Ar beam \rightarrow ^{27}Ne FRS @GSI

^{27}Ne $\rightarrow t, x, y, \Delta E$

^{26}F target

$1n$ $\rightarrow 25\text{F}$

Dipole magnet ALADIN

LAND $t, x, y, z, \Delta E$

Graph showing counts per 200 keV for $^{27}\text{Ne}(-1p)^{26}\text{F} \rightarrow 25\text{F} + n$

Legend:
- Plastic Scintillator
- Position Sensitive Pin Diode
- Fiber Detector
- DSSSD

$E_r = 350(50) \text{ keV}$

$E_r = 1.75(15) \text{ MeV}$
Search for an isomeric 4^+ state in 26F at GANIL (2011)
Determination of the 4^+ isomeric state in 26F at GANIL (2011)

- 26F implantation
- γ [0ms – 2ms]
- γ [20ms – 22ms]

Energy (keV) vs Counts/keV graph with peaks at:
- 643.4 keV, gate 643.4 keV
- 2.21 (2) ms

Diagram showing detectors and energy levels:
- E_1: 500µm
- E_2: 500µm
- Al: 1500µm
- DSSSD: 1000µm
- veto: 5000µm
- E_3: 500µm
- Clovers Ge
Determination of the 4^+ isomeric state in 26F at GANIL (2011)

Counts/keV

Energy (keV)

<table>
<thead>
<tr>
<th></th>
<th>26F</th>
<th>28Na</th>
<th>30Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>1^+</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
</tr>
<tr>
<td>2^+</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3^+</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>4^+</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
</tr>
</tbody>
</table>
β-decay of the ground and isomeric states of 26F

β-decay selection rules: $\Delta J = 0, \pm 1$

26F

26Ne

$2^+ \rightarrow 1^+$

$4^+ \rightarrow 3^+, 4^+, 5^+$

643.4 keV

660 keV

2.21 ms

7.7 ms

3^+

2^\pm Unbound
\(\beta \)-decay of the ground and isomeric states of \(^{26}\text{F}\)

- \(\beta \)-decay selection rules: \(\Delta J = 0, \pm 1 \)

\(^{26}\text{F} \):
- \(3^+ \)
- \(2^\pm \)
- Unbound
- \(1^+ \)
- \(2^+ \)
- \(4^+ \)
- \((3^+, 4^+) \)

\(^{26}\text{Ne} \):
- \(0^+ \)
- \(2^+ \)
- \(1673 \) keV
- \(2018 \) keV

\(\gamma \) + \(\beta \) [0 ms – 7 ms]
- \(1499 \) keV
- \(1673 \) keV
- \(1797 \) keV

\(\gamma \) + \(\beta \) [35 ms – 210 ms]
- \(1842 \) keV

- 2018 keV & 1673 keV: Reed et al., PRC 60 (1999)
- \(2^+ \): Gibelin et al., PRC 75 (2007)
- 1499 keV: Belleguic et al., PRC 72 (2005)
\(\beta\)-decay of the ground and isomeric states of \(^{26}\text{F}\)

\(\beta\)-decay selection rules: \(\Delta J = 0, \pm 1\)

\(26\text{F}\) → \((3^+, 4^+)\) → \(\text{26Ne}\)

Gate 1499 2.4 (2) ms
Gate 1842 2.1 (1) ms
Gate 1797 7.8 (5) ms
Gate 1673 7.7 (2) ms

Energy levels:
- \(2^+\) (660 keV)
- \(4^+\) (643.4 keV)
- \(0^+\) (1842 keV)
- \(3^+\) (1499 keV)
- \(2^+\) (1673 keV)
- \(1^+\) (2018 keV)
- Unbound (2.21 ms)

Times:
- \(2^+\): 7.7 ms
- \(4^+\): 643.4 ms
- \(3^+\): 1499 ms
- \(1^+\): 2018 ms
- Unbound: 2.21 ms
β-decay of the ground and isomeric states of 26F

β-decay selection rules: $\Delta J = 0, \pm 1$

26F

β decay of the ground and isomeric states

$R_{4+} = 42 \ (8)\%$
β-decay of the ground and isomeric states of 26F

Mass measurement from 2007

\[\approx 0.6 \, \text{BE}(1^+) + 0.4 \, \text{BE}(4^+) \]

Ground state of 26F more bound by $\sim 270 \, (50) \, \text{keV}$

$R_{4^+} = 42 \, (8)\%$
Spectroscopy of ^{26}F and ^{28}Na to probe proton-neutron forces close to the drip line

- Motivations
 Nuclear interactions close to the drip-line

- **Experimental study of ^{26}F**
 β-decay, unbound by neutron emission state…

- **Experimental study of ^{28}Na**
 probe the same interaction than in ^{26}F in another nucleus

- Interpretations, conclusions and perspectives
β-decay of 28Ne to 28Na

β-decay of 28Ne @ GANIL

$Q_\beta = 12.23 (15) \text{ MeV}$

$\tau_{1/2} = 18.6 (2) \text{ ms}$

A. Lepailleur, K. Wimmer et al., PRC PRC 92 (2015) 05309
In-beam γ–ray spectroscopy of 28Na

A. Lepailleur, K. Wimmer et al., PRC 92 (2015) 05309
In-beam γ–ray spectroscopy of ^{28}Na

In-beam γ–ray spectroscopy of ^{28}Na @ NSCL

$Q_\beta = 12.23 (15)$ MeV
$t_{1/2} = 18.6 (2)$ ms

^{26}F ^{28}Na ^{30}Al

1^+ ✓ ✓ ✓

2^+ ✓ ✓ ✓

3^+ ✓ ✓ ✓

4^+ ✓ ✓ ✓

A. Lepailleur, K. Wimmer et al., PRC PRC 92 (2015) 05309
Spectroscopy of 26F and 28Na to probe proton-neutron forces close to the drip line

- **Motivations**
 Nuclear interactions close to the drip-line

- **Experimental study of 26F**
 β-decay, unbound by neutron emission state…

- **Experimental study of 28Na**
 probe the same interaction than in 26F in another nucleus

- **Interpretations, conclusions and perspectives**
Evolution of the nuclear interaction for the odd-odd N=17 isotones?

- Systematic study of the odd-odd N = 17 isotones while going from the stability toward the neutron drip-line.
 → Weakening of the residual interaction in ^{26}F.
Evolution of the nuclear interaction for the odd-odd N=17 isotones?

- Systematic study of the odd-odd N = 17 isotones while going from the stability toward the neutron drip-line.
 - Weakening of the residual interaction in 26F.

![Graph showing energy levels](image)
Evolution of the nuclear interaction for the odd-odd $N=17$ isotones?

- Systematic study of the odd-odd $N = 17$ isotones while going from the stability toward the neutron drip-line.
 - Weakening of the residual interaction in ^{26}F.
 - Effect of the nucleon’s binding energies?

![Diagram](image)
GANIL / LPC
M. Vandebrouck, O. Sorlin, M. Marqués, F. de Oliveira Santos,
J. Gibelin, L. Caceres, J.-C. Thomas, A. Mutschler and the LISE collaboration

GSI
T. Aumann, C. Caesar, M. Holl. V. Panin, F. Wamers and the
LAND collaboration

NSCL / MSU
K. Wimmer, A. Brown, V. Bader, C. Bancroft and the GRETINA collaboration
A candidate for the unbound 3^+ of 26F at NSCL

- 26F produced by charge exchange at NSCL.
 9Be(26Ne, 26F* → 25F+n)

- 25F detected and identified after passing through the « large-gap Sweeper Magnet »

- Neutron detected with MoNa (Modular Neutron Array)

26Ne → 26F* → 25F+n

$E_{res} = 0.271 (32)$ MeV

Franck et al., PRC 84 (2011) 037302
Study of the unbound by neutron emission states of 26F at GSI (2010)

40Ar beam \(// \) \(^{27}\text{Ne} \) \(t \) \(FRS \) \(@GSI \)

26F

NaI sphere $\theta, \phi, \Delta E$

Dipole magnet ALADIN

ΔE

LAND $t,x,y,z,\Delta E$

1n

25F

162 NaI crystals
Solid angle covered: 4π

480 vertical fibers
50x50 cm2
Resolution: 1mm

4 DSSSD to track:
incident ions before the target
fragments after the target

Plastic scintillators:
14 horizontal
18 vertical

- 10 planes
- 1 plan = 20 paddles
- 1 paddle (2x2 m2) = 10 plastic scintillator layers
+ 11 iron layers
Etude des états non liés par émission neutron dans le ^{26}F

^{40}Ar beam \(\rightarrow\) ^{27}Ne

NaI sphere $\theta, \phi, \Delta E$

Dipole magnet ALADIN

LAND $t, x, y, z, \Delta E$

FRS @GSI

$^{27}\text{Ne} \rightarrow^{1n}$

^{25}F

$t, x, y, \Delta E$

TFW

-1p

-1n

π^-

ν

π

26F

ν

π

25F

ν

$J^\pi = 1^+, 2^+, 3^+, 4^+$

$J^\pi = 5/2^+$

π^-

ν

π^-

ν
Study of the unbound by neutron emission states in 26F

Frank et al., PRC PRC 84 (2011) 037302

This work

26Ne \rightarrow 26F* \rightarrow 25F+n

$E_{res} = 0.271 (32) \text{ MeV}$

27Ne(-1p)26F \rightarrow 25F+n

$E_r = 350(50) \text{ keV}$

$E_r = 1.75(15) \text{ MeV}$
Search for an isomeric 4^+ state in ^{26}F at GANIL (2011)

^{26}F: $10.4/s$

^{26}F: $5.5/s$

^{24}O: $0.058/s$

^{26}F

$E1$: $500\mu\text{m}$

$E2$: $500\mu\text{m}$

Al: $1500\mu\text{m}$

DSSSD: $1000\mu\text{m}$

$veto$: $5000\mu\text{m}$

$E3$: $500\mu\text{m}$

Clovers

Ge

^{28}Ne

^{30}Na

^{29}Na

^{26}F

^{28}Ne: $10.4/s$

^{26}F: $5.5/s$

^{24}O: $0.058/s$
β-decay of the ground and isomeric states of 26F

Implantation of an ion

Ion-β correlation area

Implantation pixel
- Determination of the 4^+ isomeric state and isomeric ratio (~40%).
- Complete spectroscopy of 26Ne (two new states, tentative spin assignment $J = 0^+_1$ et 4^+_2).
- Observation of 25Ne through the β-n branch of the β–decay of 26F.

Lepailleur et al., PRL 110 (2013) 082502
- β-decay of $^{28}\text{Ne} + \gamma$-decay on flight of $^{28}\text{Na} \Rightarrow J = 3, 4$ previously missing in ^{28}Na.

- Determination of all the states $J = 1-4$ arising from the $\pi d_{5/2} \times nd_{3/2}$ coupling.
Conclusions and perspectives

- All the $J = 1-4$ states arising from the $\pi d_{5/2} x \nu d_{3/2}$ coupling are now known for $N = 17$
 - β-decay of $^{28}\text{Ne} + \gamma$-decay in-flight of $^{28}\text{Na} \Rightarrow 3^+ \text{ et } 4^+ \text{ du } ^{28}\text{Na}$
 Evidences of low lying negative parity states found
 - Study of the unbound by neutron emission states of $^{26}\text{F} \Rightarrow 3^+ \text{ du } ^{26}\text{F}$

To go further

- γ : excitation energy
- p : k-o orbital energy
- momentum distributions of the fragments: l of the k-o orbital

- β-decay of $^{26}\text{F} \Rightarrow 4^+$ state of ^{26}F + isomeric ration
 Required: precise determination of the ^{26}F mass in order to
 → confirm the applied adjustment regarding the mass
 → reduce the uncertainties

- Proton-neutron binding energy asymmetry
 - Real effect or USDA calculation artifacts?
 → « Current » interaction
Conclusions and perspectives

- All the J = 1-4 states arising from the $\pi d_{5/2} \times \nu d_{3/2}$ coupling are now known for N = 17
 - β-decay of 28Ne + γ-decay in-flight of 28Na => 3$^+$ et 4$^+$ du 28Na
 Evidences of low lying negative parity states found
 - Study of the unbound by neutron emission states of 26F => 3$^+$ du 26F
 To go further
 - γ : excitation energy
 - p : k-o orbital energy
 - momentum distributions of the fragments: l of the k-o orbital

- β-decay of 26F => 4$^+$ state of 26F + isomeric ration
 Required: precise determination of the 26F mass in order to
 - confirm the applied adjustment regarding the mass
 - reduce the uncertainties

- Proton-neutron binding energy assymmetry
 - Real effect or USDA calculation artifacts?
 - « Current » interaction
 - Interaction readjusted on 26F
Conclusions et perspectives

- All the $J = 1-4$ states arising from the $\pi d_{5/2} \times \nu d_{3/2}$ coupling are now known for $N = 17$
 - β-decay of ^{28}Ne + γ-decay in-flight of $^{28}\text{Na} \rightarrow 3^+$ et 4^+ du ^{28}Na
 Evidences of low lying negative parity states found
 - Study of the unbound by neutron emission states of $^{26}\text{F} \rightarrow 3^+$ du ^{26}F
 To go further
 - γ : excitation energy
 - p : k_o orbital energy
 - momentum distributions of the fragments: l of the k_o orbital

- β-decay of $^{26}\text{F} \rightarrow 4^+$ state of ^{26}F + isomeric ration
 Required: precise determination of the ^{26}F mass in order to
 - confirm the applied adjustment regarding the mass
 - reduce the uncertainties

- Proton-neutron binding energy asymmetry
 - Real effect or USDA calculation artifacts?
 - « Current » interaction
 - Interaction readjusted on ^{26}F
 - Interaction readjusted on ^{30}Al