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Superallowed Fermi Beta Decays

 In general, B decay ft values can be expressed as: ot
atrix
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Weak Coupling
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- For the special case of 0+ — 0+, we have a pure Fermi (Sg=0)
allowed (Lg =0) transition. Transitions between isobaric
analogue states are known as superallowed Fermi beta decays.
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Testing Fundamental Properties of the
Weak Interaction with Superallowed Decays

- The Fermi beta decay transition is the isospin ladder operator.
For superallowed transitions between T=1 isobaric analogue
states, the matrix element is simply:

(Myi(F))? =T -Tz)(T+Tz+1) =2

- The superallowed ft values thus simplify:

ft s = K
— 2 . 2 2 . 2 2
G4l Myi(GT)|? + Gy, [ My (F) 2Gy,
= 0 for Pure = 2 for decays constants
Fermi decays between T=1 (Conserved
IAS Vector Current

hypothesis)




A Selection of Beta Decay ft
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Superallowed ft values
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Superallowed Fermi Beta Decay:
Theoretical Corrections

Ft = ft (1+ 0r)(1+ Ons - Oc) = — = constant
X A
/ \ \V ZGV (1 +AR)
“Corrected” Experiment Calculated corrections (=1%) .
f value > Half-life (nucleus dependent) CVC Hypothesis
> Q-value o .
> Branching Ratio Inner radiative correction (=2.4%)

(nucleus independent)
Ag = nucleus independent inner radiative correction: 2.361(38)%

O = nucleus dependent radiative correction to order Z203: =1.4%
- depends on electron’s energy and Z of nucleus

Oy = huclear structure dependent radiative correction: -0.3% to 0.03%

0. = nucleus dependent isospin-symmetry-breaking (ISB) correction: 0.2% to 1.5%
- strong nuclear structure dependence (radial overlap)



Corrected Superallowed Ft Values
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- The superallowed data confirm the CVC hypothesis at the level
of 1.2 x 104




Search for Physics Beyond the Standard Model

- The SM description of weak interaction is an equal mixture of vector and
axial-vector which maximizes parity violation.

- We can seek evidence that the weak interaction is not pure “V-A” by

searching for contributions from scalar or tensor couplings in the weak
interaction.

- In particular, the superallowed data are sensitive to contributions from scalar
interactions.

SM description With Scalar Interaction
JFt = constant » Ft(1 +bpy(W™1)) = constant
W = Total Positron Energy The <(W-1) dependence
br = Fierz Interference Term means that it is the lowest-Z
decays that are most
vy =+/1-(aZ)? sensitive to contributions

from a scalar interaction




Search for Physics Beyond the Standard Model
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br = -0.0028(26)



Search for Physics Beyond the Standard Model
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The Fierz interference term

1 (bF) can be extracted by a
1 linear fit of 1/Ft vs Y(W-1)

| Current limit from Hardy and
| Towner, Phys Rev. C 91
1025501 (2015):

br = -0.0028(26)

| Limits are dominated by the
1 lightest superallowed decays

140 and, in particular, 19C




The 10C half-life

- The adopted 1°C half-life is evaluated using the 4 most precise
measurements.

- The inconsistencies in the dataset result in a highly inflated uncertainty on
the adopted world average half-life.
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The 10C half-life

- The 1°C half-life is important because it has a significant
impact on the limits set on scalar currents.

« More than 200 individual superallowed measurements of

1a08

Ba90

Az74

comparable precision are currently used to set the limit on bg, |**——

- If the half-life from either of the two peaks in the ideograph is
adopted, the central value of br is shifted by more than 0.50

32.60

1/Ft(1s) x 107
=3
"~
N
wn

b -
-

[ e o

’NRb

|

|

1

0 0.1

0.2

0.3

1Ft(1s) x 10°

Ba63

Ea62

PRI AR |

PETETEE Il

———

19.10 19.15 19.

. f
20 19.

25 19.30 19.3!
Half-life (s)

\19.40 19.45 19.50
T T

7<W">

« An accurate and precise determination of the 1°C half-life is thus critical to the
limits set of br set by the superallowed data.
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« Up to 100 pA, 500 MeV protons from TRIUMF’s main cyclotron are
accelerated onto targets which produce high-intensity secondary
radioactive ion beams by the ISOL technique

 NiO target used to obtain CO+ and C+ions

- Radioactive ion beams of 19C160 (A=26) and °C (A=10), with beam
intensities of ~1.5x10% pps and ~2.5x104 pps, respectively, were

delivered to the detectors
| . 000



The 19C decay scheme

- 10C decays to the excited states in 19B giving us the opportunity to
measure the half-life by both direct measurements of the emitted 3 particle
or by measuring the y-ray emitted during the decay to the ground state.
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¥ Counting — The 8t Spectrometer

« Spherical array of 20 BGO Compton suppressed HPGe detectors
- ~1% photopeak efficiency at 1.3 MeV

- Beam implanted onto a tape at the centre of the array. The decay
activity was measured for 500 s (for ~25 half-lives). Tape moved into
disposal box which is shielded by a lead wall (removes long lived
contaminants out of view of the detector).



¥ Photopeak Counting

- The 19C half-life was measured by gating on the characteristic 718-keV
y-ray which follows 100% of 1°C (3 decays.
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¥ Photopeak Counting

Counts per 1.2 s

Residuals [(y-y,, /0]

A total of 58 runs were taken, comprised of 562 cycles.
After a run, the shaping times and dead-times were varied.
The dead-time and pile-up corrected data are summed and a single fit to

the data is performed.
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¥ Photopeak Counting — Systematics

- The data are grouped according to their experimental running
conditions. The grouping with the largest ¥2/v > 1 is used to inflate the
uncertainty on the measured half-life, as recommended by the Particle
Data Group (PDG).
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B Counting — 41t gas counter

— Implantation Site

~28cm

— Gas Counter

Tape
Spool i

Atmosphere

High vacuum
(~10¢T)

Tape
Disposal
Box

* 41t continuous-flow proportional gas counter with tape transfer system

* Directly detects B particles with ~100% efficiency

+ Cycles: Implant beam, move into gas counter and measured the
decay activity for ~500 s, move tape into tape disposal box to remove

long-lived contaminants from the gas counter.




B Counting — In-beam Contaminant

- Radioactive beams of both 1°C (A=10) and 19C16Q (A=26) were

delivered to the gas counter

* |In the A=26 beam, a
contaminant with
T12=9.97(8) min was
identified

* T12 consistent with the that of
13N, which could be delivered
as 8Nz (mass difference to
10C160 of 0.271 MeV) or
HC'3N (mass diff. of 1.673
MeV) in the A=26 beam.

* The literature T1,2 of 13N was
included as a fixed parameter
in the fit to the subset of data
taken with the A=26 beam.
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B Counting

- Atotal of 82 runs were taken, comprised of 598 cycles.

- After a run, parameters such as the dwell time, beam type, and gas
counter, (etc..) were changed before a new run was started.
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B Counting — Systematics

- Extensive investigation of systematics was performed.

« Each grouping of the experimental parameters yield a ¥2/v <1 and hence
no inflation of the statistical uncertainty.

- Vary the fixed parameters within their 10 limits. No statistically significant
change in the half-life is observed.

19.36 : : . i . i
| e« All Data .
= Bias Voltage (V): 2400, 2450, 2500, 2550, 2600, 2700, 2750, 2800 i o T (“N):+/-1
193511+ Threshold (mV): 70,95, 120 1 193031 . D{c’;fmm)e', o -
4 Dwell Time (s): 1.0,1.2,14 b .
19341 « Radioactive Beam: 10C16O, c u _ _ _
» Gas C%mter: 1,2 1 19302 _ _
_1933|| ¥ Initial " C Activity (kHz): <6, 6-8,8-10, 10-12,>12 -
w2
= 1932 10 .
oo T, ,( C)=19.3009 £ 0.0017 s
< [ ]
= 1931 T 193+ —
i . E T e o T A T I 1 T — A i I~
e s e, s - e s e +
I I-17 1 i 1+ 1 1 L 19299 1 i 1 .
1929} - i a 1
1 I 1 I 1 I 1 I 1 I 1
. 41 19.298
1928 YV 092 0.13 054 006 062 0.62 0 1 2 3 4 5 6

T12,8(1°C) = 19.3009 £ 0.0017 s

The most precise (0.009%) superallowed T12 reported to date!
| . 000



Results — 10C Half-life

- The 6 most precise half-life measurements now vyield
T12=19.3015 £ 0.0015 s with a X2/v = 1.90, which is an improvement in
the uncertainty by a factor of nearly 3.
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Results — Scalar Current Limits

- With the updated 1°C half-life and newly updated O Q-value (A. A.
Valverde et al., Phys. Rev. Lett. 114, 232502 (2015)) and #O branching
ratio (P. A. Voytas et al. Phys. Rev. C 92, 065502 (2015)) measurements, a

linear fit to the superallowed Ft data yields an updated Fierz interference
term of:
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- 34Ar |
br=-0.0018(21) 2708 b, = -0.0018 + 0.0021 i
and 32,65 “Ga Ft,= 32070.8 +1.8s B
CCv=-br2= b o ! v =04
0.0009(11) -

for the ratio of weak
scalar to vector

couplings assuming

left handed neutrinos
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M. R. Dunlop et al., Phys. Rev. Lett. 116, 172501 (2016)



Conclusions

- Measurements of the 1°C half-life were performed in order to resolve
Inconsistencies in the data set.
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Conclusions

- Measurements of the 19C half-life were performed in order to resolve
inconsistencies in the data set.

 Resolving the discrepancy in the 1°C half-life is important because it is the
lowest-Z superallowed decay and is most sensitive to contributions from
scalar currents in the weak interaction.

- We measured the half-life via both y-ray photopeak counting and direct 3
counting, obtaining consistent results.

- The B measurement (T12=19.3009(17) s) represents the most precise
superallowed half-life measurement reported to date and the first to
achieve a precision below 104,

- The updated Ft data, which includes the 19C half-life measurements
presented here and recent measurements of the O Q-value and BR, are
used to calculate the limits on scalar currents yielding br = -0.0018(21)
which remains fully consistent with the absence of weak scalar currents.
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Limits on Weak Scalar Currents

- Superallowed data gives us br, which we can relate to a scalar coupling
as Cs/Cv = -br/2 = +0.0009(11) given Cs=C's

« For general Cs# C's we have br = -(Cs/Cv + C's/Cv) and need to use 3-v
angular correlation coefficient to provide an additional constraint
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Testing Fundamental Properties of the
Weak Interaction

« Using Gv as determined from the superallowed ft data can be used
to calculate Vuq and test CKM unitarity.

» The most demanding test of the CKM unitarity comes from the
sum of the squares of the top-row elements

- The superallowed data provide the most precise experimental
measure for V.

Via = Gv/Gr V24 VA +V2 =0.99978(55)
d/ Vud Vus Vub d
s’ — chd/ Vcs Vcb S
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Gas Counter Rates
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¥ Photopeak Counting - Contaminants

- Searched for possible contribution within the 718 keV photopeak from

possible contaminants in the A = 26 beam.

v—PB Coincidence Spectrum
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¥ Photopeak Counting - Contaminants

- Searched for possible contribution within the 718 keV photopeak from
possible contaminants in the A = 26 beam.

(2) 8mA| (T1/2 = 6.34602(54) s)

* No y radiation.

» Dedicated 3 counting
measurement with the mass
separator was tuned to the
mass of 26MmA|l.

 No significant contribution
from 26MAl measured.
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¥ Photopeak Counting - Contaminants

- Searched for possible contribution within the 718 keV photopeak from
possible contaminants in the A = 26 beam.
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Contaminants

Specie | Mass Defect (MeV) | Mass Difference (MeV)
19C10 10.961 0
Mass difference CNTN 10.690 0.271
between 26mA| 78BI'3+ -24.484 35.445
and 78Br is 26Na, -6.862 17.553
12.274 Mev 26m Al -12.210 23.171
HCN 12.634 -1.673
PCPN 8.470 2.491
Contaminant | Dwell Time (s) | Half-life (s) | Absolute Difference (s)
“°Na 1.0 19.2987(30) 7.7x107°
“°Na 1.2 19.3022(30) 7.0x 107°
“6Na 1.4 19.3033(39) 2.8 x 107°
26mA| 1.0 19.2989(30) 0.0002
26mA] 1.2 19.3025(30) 0.0003
26mA| 14 19.3038(39) 0.0005

The '9C beam intensity is suppressed by a factor of ~700 when the beam is tuned to 26mAl relative to the optimized
tune to 1°C'60. No such suppression factor is assumed when including the 26™Al component deduced from the
26mAl run. We expect the true amount of 26mAl to be even smaller than included in the above numbers.



