Fast Neutron Spectroscopy
with a Novel C7LYC array

Partha Chowdhury
University of Massachusetts Lowell

NS2016, Knoxville, July 26, 2016

Supported by the NNSA-SSAA
Grant DE-NA00013008, U.S. Department of Energy
Cs$_2$LiYCl$_6$:Ce (CLYC) Scintillator

- dual neutron-gamma response
- n-γ discrimination via pulse shapes
- thermal neutrons via 6Li(n,\(\alpha\))t
- Developed by RMD Inc., MA
- DOE-SBIR partner with UML

N. D’Olympia et al., NIM A694,140(2012)

W1/W2 vs Total Area

Thermal Neutron Response

UML 1 MW research reactor

Chowdhury NS2016, Knoxville July 26, 2016
CLYC: fast neutron response

N. D’Olympia et al., NIM A714, 121 (2013)
Small CLYC Array for Neutron Spectroscopy

SCANS

Chowdhury
NS2016, Knoxville
July 26, 2016
Small CLYC Array for Neutron Spectroscopy

VME System
Struck digitizers
16 Channel
250 MS/s
14-bit ADC

7Li-enriched
1" x 1"
16-element
C7LYC array

SCANS

Chowdhury
NS2016, Knoxville
July 26, 2016
7LYC: high energy response

<table>
<thead>
<tr>
<th>Energy (MeV)</th>
<th>Counts [arb. unit]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.52</td>
<td>5000</td>
</tr>
<tr>
<td>0.82</td>
<td>4000</td>
</tr>
<tr>
<td>1.19</td>
<td>3000</td>
</tr>
<tr>
<td>1.30</td>
<td>2000</td>
</tr>
<tr>
<td>1.80</td>
<td>1500</td>
</tr>
<tr>
<td>2.01</td>
<td>1000</td>
</tr>
<tr>
<td>2.69</td>
<td>500</td>
</tr>
<tr>
<td>3.63</td>
<td>200</td>
</tr>
<tr>
<td>4.02</td>
<td>150</td>
</tr>
<tr>
<td>5.42</td>
<td>100</td>
</tr>
<tr>
<td>7.23</td>
<td>50</td>
</tr>
<tr>
<td>8.02</td>
<td>20</td>
</tr>
<tr>
<td>13.5</td>
<td>10</td>
</tr>
<tr>
<td>15.6</td>
<td>5</td>
</tr>
<tr>
<td>18.0</td>
<td>2</td>
</tr>
<tr>
<td>20.0</td>
<td>1</td>
</tr>
</tbody>
</table>

Energy [keVee]
C7LYC: light output

N. D’Olympia et al., NIM A763, 433 (2014)
Test experiments with SCANS

Elastic/inelastic neutron scattering cross-sections (56Fe and 238U) at Los Alamos Neutron Science Center (LANSCE)

- TOF from neutron production target to CLYC (18 m flight path) provides E_{incident}
- Pulse height in CLYC provides $E_{\text{scattered}}$
- Plot $E_{\text{scattered}}$ vs E_{incident}
Fe (PRELIMINARY)

- Entries: 137141
- Mean x: 3576
- Mean y: 2660
- RMS x: 1772
- RMS y: 1097

- elastic $E_{out} = E_{in}$
- inelastic $E_{out} < E_{in}$

Pulse Height (scattered energy)

TOF energy (incident energy)

thermal
SCANS at LANSCE

Fe (PRELIMINARY)

<table>
<thead>
<tr>
<th>h1</th>
<th>Entries</th>
<th>137141</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean x</td>
<td>790.3</td>
</tr>
<tr>
<td></td>
<td>Mean y</td>
<td>5898</td>
</tr>
<tr>
<td></td>
<td>RMS x</td>
<td>1660</td>
</tr>
<tr>
<td></td>
<td>RMS y</td>
<td>2099</td>
</tr>
</tbody>
</table>

TOF energy + Pulse Height

TOF energy – Pulse Height
SCANS at LANSCE

Fe (PRELIMINARY)

<table>
<thead>
<tr>
<th>h9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>RMS</td>
</tr>
</tbody>
</table>

Counts

TOF energy – Pulse Height

0.85 MeV

0+ GS band

\[^{56}_{26}\text{Fe} \]
β-delayed Neutrons at CARIBU

X-Array Super clover (70mm x 70mm crystals)

X-Array Clover 60mm x 60mm crystals

94Rb test case: analysis in progress (poster by Gemma Wilson)
The first 3” x 3” C7LYC
Summary

Ongoing
Analysis of LANSCE test data on 56Fe and 238U
Analysis of CARIBU expt (β-delayed neutrons: 94Rb decay)
(poster by Gemma Wilson)

New 3-year science proposal funded by NNSA-SSAA

Plans
Characterize and test new 3” x 3” C7LYC crystal
Second (n,n') experiment at LANSCE (Fall 2016)
Measure and simulate efficiency
Investigate $n-\gamma$ coincidences in SCANS
Measure low energy response of C7LYC
Teams

LANSCE
UMass Lowell
Nathan D’Olympia
Tristan Brown
Emery Doucet
Alan Mitchell
Emily Jackson
Kim Lister
Partha Chowdhury
Los Alamos
Matt Devlin
Shea Mosby

CARIBU
UMass Lowell
Gemma Wilson
Tristan Brown
Thomas Chillyery
Alan Mitchell
Patrick Copp
Kim Lister
Partha Chowdhury
Argonne
Guy Savard
Michael Carpenter
Shaofei Zhu

Chowdhury NS2016, Knoxville July 26, 2016