New \(\beta \)-Decay Studies of Deformed, Neutron-Rich Nuclei in the A\(\sim \)160 Region

D.J. Hartley,\(^1\) F.G. Kondev,\(^2\) G. Savard,\(^3\) A.D. Ayangeaaka,\(^3\) S. Bottoni,\(^3\) M.P. Carpenter,\(^3\) J.A. Clark,\(^3\) P. Copp,\(^4\) C.R. Hoffman,\(^3\) C. Hu,\(^5\) R.V.F. Janssens,\(^3\) T. Lauritsen,\(^3\) A. Nystrom,\(^6\) R. Orford,\(^7\) J. Sethi,\(^3,8\) H. Zhang,\(^5\) S. Zhu,\(^3\) Y. Zhu\(^5\)

\(^1\) United States Naval Academy, Annapolis, Maryland
\(^2\) Nuclear Engineering Division, Argonne National Laboratory, Argonne, Illinois
\(^3\) Physics Division, Argonne National Laboratory, Argonne, Illinois
\(^4\) University of Massachusetts-Lowell, Lowell, Massachusetts
\(^5\) Zhejiang University, Hangzhou, China
\(^6\) University of Notre Dame, Notre Dame, Indiana
\(^7\) McGill University, Montreal, Quebec
\(^8\) University of Maryland, College Park, Maryland
Motivation

- Unusual structure effects in N-rich, rare-earth nuclei
 - Especially near $N = 98$

- Understanding the pygmy rare-earth peak depends on nuclear structure input

$^{156}\text{Pm, }^{160}\text{Eu, } & ^{162}\text{Eu Decay Studied: Focus on }^{160}\text{Eu}$

CARIBU at Argonne National Laboratory provided the beams

Mass Measurement

β Decay Spectroscopy

- Previously for ^{160}Eu: Only a (1-) isomer with $t_{1/2} = 38(4)$ s
- Tape/Beam Cycle: 180 s beam on, 180 s beam off
- β-gated γ vs. time matrix: Measure lifetimes
- β-gated γ-γ coincidence matrix in beam off condition
Mass Measurement of 160Eu

- The new phase-imaging ion-cyclotron-resonance (PI-ICR) technique was used
 - Method tested in CPT with well-known energy of 156Pm

- Cyclotron frequency determined by measuring the accumulated phase during a period of free motion (t)
 - Measured phase difference between the states gives the excitation energy
 - AME12 value for 160Eu is an unknown mixture of these two states
β-Decaying States in 160Eu

- Previous $t_{1/2}$: 31(4) s, 41(4) s, 50(10)s, 53(10)s
 - Assumed single low-spin, β-decaying state
- Lifetimes of γ's fell into 2 values (2 isomers)
- γ’s with $t_{1/2}$=42 s from, or fed, high-spin states
- $\pi[413]5/2 \nu[523]5/2 \rightarrow K^\pi = 5^- & 0^-$
- Nuclear structure of 160Gd states assist in configuration assignment
- Two different level schemes proposed for 160Gd
 - Ours differs from both!
- 1999-keV state most strongly fed by $K^\pi = 5^-$
 - $t_{1/2}$=42 s isomer; log$ft \approx$ 5.0 -> related configs
- More to come…