Collinear Resonance Ionization Spectroscopy of neutron-rich copper isotopes

Ruben de Groote
NS 2016
Laser spectroscopy of Cu isotopes

Collinear laser spectroscopy:

- Up to 75Cu
- 73Cu → 75Cu: spin change $3/2 \rightarrow 5/2$
- Moments reproduced by proton excitation across $Z=28$ (→ weakening shell gap)

In-source laser spectroscopy:

- 77Cu: dipole moment, spin
- 78Cu: absence of isomers, small dipole moment
Overview of literature:
- All observables up to 75Cu
- I, magnetic dipole for 77Cu
CRIS results

CRIS combines strengths of in-souce and collinear laser spectroscopy

- 76: μ, $\delta<r^2>$, I, Q
- 77: $\delta<r^2>$, I, Q
- 78: μ, $\delta<r^2>$, I, Q – ? analysis ongoing
Future prospects

- CRIS has pushed high-resolution measurements
 - High resolving power
 - High background suppression
 - Additional three isotopes – most exotic case ~10pps

- Can CRIS cope with presence of contaminants for ^{79}Cu?

 Our goal: ^{79}Cu!