First direct observation of enhanced octupole collectivity in 144,146Ba

Nuclear Structure 2016
Knoxville, Tennessee

July 25, 2016

Brian Bucher
Background

- Experimental & theoretical indications that 144,146Ba are among the most octupole-enhanced isotopes
- Octupole enhancement due to $\Delta J, \Delta \ell = 3$ orbitals near the Fermi surface at $Z \sim 56, N \sim 88$
- How does octupole collectivity evolve with Z, N?
 - Improve nuclear models
 - Atomic EDM search

Coulomb Excitation is only unambiguous measure of E3 strength!

E3 quenched or shell occupancy effect?

* Spin-averaged $B(E1)/B(E2)$ multiplied by $B(E2; 2\rightarrow 0)$,
 148Ba $B(E2)$ estimated from systematics

Data taken from NNDC

Urban et al., NPA 613:107 (1997)
Production of radioactive barium beams from CARIBU

CAlifornium Rare Ion Breeder Upgrade
- Spontaneous fission ^{252}Cf
- Extract ^{144}Ba ($T_{1/2}=11.5$ s), ^{146}Ba ($T_{1/2}=2.2$ s): He gas catcher, isobar separator

650 MeV $^{144,146}\text{Ba}$ Beams
- ECR Ion source: $^{144,146}\text{Ba}^{28+}$
- Accelerated by linac
- 8000 ^{144}Ba per second on target, ~10 days,
 3000 ^{146}Ba per second, ~12 days
- Stable contaminants present from ECR

For experimental details, see Bucher et al., PRL 116: 112503 (2016)
Coulomb Excitation with Chico-II / Gretina

Compact Heavy-Ion COunter
- Parallel-plate avalanche counter (20 total)
- Angular coverage is 69% of 4π
- Good intrinsic spatial & temporal resolution (1σ): $	heta$ (0.66°), φ (1.05°), Δt (0.51 ns)
- Provides particle ID and Doppler correction for GRETINA

Gamma-Ray Energy Tracking In-beam Nuclear Array
- Segmented Ge γ-ray tracking array
- 1π angular coverage
- Position resolution 2mm
- 7 clusters each with 4 segmented Ge detectors

(Half of CHICO)

0.9 µm thick Mylar window
^{146}Ba γ-ray spectrum

- Negative-parity (odd-spin) levels excited by E3
- Decay yields provide measurement of E3 excitation probability!

Observed A=146 Isobars
- Ba
- Ce
- La, 2-
- La*, (6-)

Coincident γ-rays (ToF-gated, 40°–75°, no tracking)
Comparison of E3 matrix elements

- Measurement uncertainty dominated by statistics
- Increased octupole collectivity confirmed near N=90
- Theory underpredicts E3 strength, however predicted E1 behavior is validated

Enhanced octupole correlations!

Octupole enhancement from v_{13/2} near Fermi surface around N=90

Data from NNDC
Ground-state β_3 deformation: atomic EDM search

- Nuclear Schiff moment expected to be largest contribution to atomic EDM for diamagnetic atoms
- Are Schiff moments larger in lanthanide region?

Compare parameters between ^{224}Ra and Ba measurements:
^{144}Ba is 64% larger, ^{146}Ba 84% larger (numerator only)

$$S \propto \frac{\beta_2 \beta_3^2 Z A^{2/3}}{|E^+ - E^-|}$$

Spevak, Auerbach, & Flambaum, PRC 56: 1357 (1997)

Need more data from reaccelerated RI beam experiments!
Collaborators

Lawrence Livermore National Lab
B. Bucher, C.Y. Wu, M.Q. Buckner

Argonne National Lab
S. Zhu, R.V.F. Janssens, M. Albers, A.D. Ayangeakaa, M.P. Carpenter,
J.A. Clark, H.M. David, C.R. Hoffman, B.P. Kay, F.G. Kondev,
A. Korichi, T. Lauritsen, R.C. Pardo, G. Savard, D. Seweryniak

Lawrence Berkeley National Lab
C.M. Campbell, M. Cromaz, A.O. Macchiavelli, A. Wiens

University of Maryland
C.J. Chiara, J. Harker

University of Rochester
D. Cline, A.B. Hayes

Ohio University
H.L. Crawford, A. Richard

Florida State University
M. Riley

University of Notre Dame
M.K. Smith

University of Liverpool
P.A. Butler

University of the West of Scotland
E.T. Gregor, M. Scheck