Structure and shape evolution in ^{75}Ge

Jasmine Sethi
University of Maryland, College Park, MD
Argonne National Laboratory, Argonne IL

Poster S2-2
List of collaborators

W. B. Walters, C. J. Chiara, J. Harker, A. Forney, I. Stefanescu, and N. Sharp
University of Maryland, College Park, MD

R. V. F. Janssens, S. Zhu, M. P. Carpenter, M. Alcorta, C. R. Hoffman, B. P. Kay, F. G. Kondev, T. Lauritsen, C. J. Lister, E. A. McCutchan, A. M. Rogers, and D. Seweryniak,
Argonne National Laboratory, Argonne, IL

B. Fornal, G. Gürdal, W. Królas, and T. Pawłat
Niewodniczański Institute of Nuclear Physics PAN, PL-31342, Kraków, Poland

J. Wrzesiński
Joint Institute for Heavy Ion Research, Oak Ridge, Tennessee 37831, USA

ACKNOWLEDGEMENTS
This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract numbers DE-AC02-06CH11357 and DE- AC02-05CH11231 and under Grant numbers DE-FG02-94ER40834 and by the Polish Ministry of Science Grant numbers 1P03B05929 and NN202103333. This research used resources of ANL’s ATLAS facility, which is a DOE Office of Science User Facility.
Motivation

Ge isotopes in the vicinity of the N=40 transitional region are very sensitive to shape changes with addition of nucleons due to the spacing of neutron orbitals in the fpg model space.

Higher mass N=43 isotones are known to exhibit shape evolution and the previous experiments indicate a possibility of shape change in 75Ge.

It is interesting to explore the region of triaxiality near 76Ge; the sole example of a rigid triaxial nucleus in this mass region.

High spin studies are crucial to complement results from transfer, (n,γ) reactions and β-decay studies as they provide information on new high-spin levels and assignment of spins and parities leading to a better understanding of neutron and proton configurations.
Experimental Set-up and details

Deep-inelastic reactions with 76Ge beam on thick targets of 208Pb, 198Pt, and 238U with beam energies ~ 25% above the Coulomb barrier were used to populate the excited states in 75Ge using the Gammasphere at ATLAS at ANL.
Level Scheme of 75Ge

- New positive-parity band has been identified.
- Negative-parity bands have been extended to high spins.
- Multipolarities of most of the negative parity states have been assigned from the angular correlation analysis.
New positive-parity band

A new positive-parity band has been identified by cross-correlating coincidences with the complementary recoil 209Pb from the 76Ge + 208Pb data and the same was confirmed in 76Ge on 198Pt and 238U data sets. The positive-parity was extended upto 21/2 \hbar and can be interpreted to be built on the $\nu g_{9/2}$ configuration. We propose this band to have positive parity being built on the 9/2$^+$ bandhead.
Negative-parity bands

Both negative-parity bands have been extended to higher spins. From the previous works the levels above $9/2^-$ were not known.

The negative-parity states can be interpreted in terms of $\nu p_{1/2}$ coupled to the prolate deformed ^{74}Ge core.
A comparison of kinematic moment of inertia vs rotational frequency is plotted for ^{77}Se and ^{75}Ge yrast negative parity band (left) and the new positive parity band (right)

- A similar up bend is observed in both the nuclei for the lowest negative-parity bands which can be attributed to quasiparticle alignment.
- For the positive parity band, a similar trend can be expected but further experimental investigation is required.
Conclusion

- The level scheme of 75Ge has been extended to high spins.
- First observation of levels up to $21/2 \hbar$ for both negative parity and positive parity band.
- Spins and parities have been assigned to most of the negative parity states deduced from the angular correlation analysis.
- Comparison of the moment of inertia of 75Ge with 77Se isotone, suggests a similar structure and comparable deformation in both the nuclei.
- No evidence of triaxiality has been found in 75Ge, more experimental investigation is required.
Thank you

Poster S2-2