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The alloy-design strategy of combining multiple elements in near-equimolar ratios has shown 
great potential for producing exceptional engineering materials, often known as “high-entropy 
alloys”. Understanding the elemental distributions, and thus the evolution of the configurational 
entropy during solidification, is the goal of the present research. The case of the 
Al1.3CoCrCuFeNi model alloy is examined, using integrated theoretical and experimental 
techniques, such as ab initio molecular dynamics simulations, neutron scattering, synchrotron X-
ray diffraction, high-resolution electron microscopy, and atom-probe tomography. It is shown 
that even when the material undergoes elemental segregation, precipitation, chemical ordering, 
and spinodal decomposition, a significant amount of disorder remains, due to the distributions of 
multiple elements in the major phases. The results suggest that the high-entropy-alloy-design 
strategy may be used to develop a wide range of complex materials, which are not limited to 
single-phase solid solutions. The integrated experimental and theoretical techniques, discussed 
here, are particularly well-suited to studying partially-ordered materials, produced using the 
high-entropy-alloy design strategy. 
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