THE SALIENT FLUORIDE FUEL SALT IRRADIATIONS

Ralph Hania
2016-10-04
Petten, The Netherlands

Amsterdam
COMPLETE NUCLEAR INFRASTRUCTURE
THE HIGH FLUX REACTOR (HFR)

- High flux
- 45 MW thermal power
- Stable and constant flux profile in each irradiation position
- Main applications
 - Isotope production
 - Nuclear energy irradiation services
 - R&D
- 31 operation days per irradiation cycle, 9 cycles a year
THE HIGH FLUX REACTOR (HFR)

Ex-core region, flux control by displacement

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
</table>

- Reflector
- Fuel
- High Flux Position
- Medium Flux Position
- Low Flux Position
- Control Rod

<table>
<thead>
<tr>
<th>0-3, location dependent</th>
<th>5-8</th>
<th>3-5</th>
<th>1-3</th>
<th>Material DPA rate (DPA/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-700, displacement controlled</td>
<td>n/a</td>
<td>500-700</td>
<td>300-400</td>
<td>Linear heat rate (W/cm fresh LWR fuel)</td>
</tr>
</tbody>
</table>

The stable and constant flux profile in each irradiation position is a unique HFR feature
THE DUTCH NUCLEAR R&D PROGRAM

R&D themes:

- Safe Reactor Operation
- Radiation Protection
- Decommissioning
- Nuclear Technology for the future
 - SMR
 - Fusion
 - LUMOS (Learning to Understand MOIten Salts)
LUMOS

Trilateral collaboration between NRG, JRC and TUD

• Complementary competences

Molten Salt Technology fits well within R&D goals

• Improving safety
• Reducing use of resources
• Contributing to CO₂-free energy market

Program Objectives

• Obtain operational experience
• Confirm FP stability in the salt
• Investigate FP management methods
• Develop in-pile metal/graphite corrosion rig
• Waste route for spent molten salt fuel
• In-pile molten salt loop for the HFR Petten
SALIENT-01

Goals:
• Handling experience
• Salt-graphite interaction
• Fission product stability / redistribution
• Metal particle size distribution

Issues:
• Reduced salt condition \(\rightarrow\) increased graphite interaction
• Radiolytic gas production
• Graphite crucibles
• Open container (through metallic filter)
• Wall temperature maintained at ~610 °C (ThF₄-LiF), 24 TCs
• Neutron fluence monitored through activation sets
MATERIAL SAMPLES

<table>
<thead>
<tr>
<th>nr</th>
<th>mat crucible</th>
<th>Contents</th>
<th>øin (eff)</th>
<th>øin (crucible)</th>
<th>identifier</th>
<th>Metal samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>L5</td>
<td>PCIB</td>
<td>SS</td>
<td>8.0</td>
<td>8.0</td>
<td>EXP180-05</td>
<td>-</td>
</tr>
<tr>
<td>L4</td>
<td>T-950</td>
<td>LIF</td>
<td>7.6</td>
<td>7.8</td>
<td>EXP180-04</td>
<td>nickel (Ni-201) foil 0,1 mm</td>
</tr>
<tr>
<td>L3</td>
<td>PCIB</td>
<td>LIF</td>
<td>7.0</td>
<td>7.0</td>
<td>EXP180-03</td>
<td>-</td>
</tr>
<tr>
<td>L2</td>
<td>T-950</td>
<td>LIF</td>
<td>7.0</td>
<td>7.0</td>
<td>EXP180-02</td>
<td>-</td>
</tr>
<tr>
<td>L1</td>
<td>PCIB</td>
<td>LIF</td>
<td>7.6</td>
<td>7.6</td>
<td>EXP180-01</td>
<td>nickel (Ni-201) sponge</td>
</tr>
</tbody>
</table>

Nickel added to two crucibles:
- Foil
- Sponge
FUEL POWER VS. TIME (THF$_4$-LIF)

- Fuel power increases during the irradiation (U-233 production)
- Constant wall temperature by variation of gas mixtures
ASSEMBLY

Synthesis and crucible loading at ITU

Assembly of sample holder at NRG
FLUORINE EVOLUTION (RADIOLYSIS)

- Best estimate (maximum) G-value: 0.02 (0.045) F₂-molecules / 100 eV.

- Saturation at fluorine losses of 2-8 mol-%

G-value: slope = 0.012 molecule F₂ / 100 eV

Large salt blocks, higher doserate

Fig. 2.3. Loss of Radiolytic Fluorine from MTR-47.5 Capsules.

Fig. 3. Fluorine generation curves for 1986 and 1995 irradiation experiments.
BACK-END

Fluoride salt is not an acceptable waste form (Corrosive and Unstable)

Temporary storage:
- Nickel-based container
- Inert gas
- F_2 / UF_6 adsorbent

NRG waste route to COVRA (government storage)
- Dissolution in strong nitric acid
- Precipitation of as hydroxides or nitrates after removal of fluoride
- Calcination to oxides
- Cementation of remaining liquid waste

General MSR waste processing: vitrification?
SALIENT-02

- Twin experiment to SALIENT-01
 - LiF – BeF₂ – UF₄ eutectic

- Not yet assembled
 - On hold

- May be rebuilt with pressure sensor
 - on-line measurement of fluorine release
NEXT: SALIENT-03/-04

Goals:
• Quantify radiolytic gas production

• Realistic chemistry (salt buffering, use of heaters)
• Metal corrosion study (Ni-based alloys)
• Influence graphite on metal corrosion
• Graphite-salt interaction
• Metal particle size distribution

• ‘Tritium release measurements’
GAMMA IRRADITION

- Space for 5 Salt capsules
- Pressure vs. dose
- Long-term experiment
- Sister experiment at TU Delft

Axial distribution of the gamma radiation over the height of the container, for the large diameter container.
OUTLOOK

• We underestimated radiolytic F_2 release and related chemistry
 • SALIENT-01 now non-representative
 • Significant delays / time lost
 • Safety discussions before end 2016

• 2017 priorities
 • Start of SALIENT-01
 • Start of gamma irradiations
 • Establish salt waste route to COVRA
 • First results helium bubbling @TU Delft
 • Safety Reports for SALIENT-03/-04
 • Design of the in-pile loop
ACKNOWLEDGEMENTS

I. Bobeldijk
D.A. Boomstra
A.J. de Koning
S. de Groot
L. Pool (NRG)

O. Benes
P. Soucek
R.J.M. Konings

E. Capelli
A.L. Smith
M. Rohde
J.L. Kloosterman

Funding
Dutch ministry of foreign affairs
European Commission

EU DuC = N