MAMBA-3D Development & VERA Integration

Benjamin Collins
Physics Integration
Oak Ridge National Laboratory

CASL Industry Council Meeting
Charleston, SC
April 4, 2017
Overview of Coupling Method

- Previous work in FY15-FY16 developed coupling between MPACT, CTF, and MAMBA1D
- This capability was used to simulate the CIPS experienced in Cycle 7 of Watts Bar Unit 1
Watts Bar Cycle 7 with MAMBA1D

- Axial Offset [%]
- Cycle Exposure [GWD/MT]

- without MAMBA1D
- with MAMBA1D
- Measured
- Outages/Downpowers
Watts Bar Cycle 7 with MAMBA1D

- Two coefficients were calibrated which controls threshold in which boron precipitates and the thickness of boron which can be precipitated.
Strategy to Improve Reliability of CIPS Predictions

- Improve and integrate MAMBA3D
 - MAMBA1D is missing the detailed chemistry kinetics models in MAMBA3D
 - Create a API for MAMBA3D similar to MAMBA1D
 - Improve computational efficiency of MAMBA3D
 - Improve testing of MAMBA3D

- CTF Hi2Lo Reconstruction
 - Use CFD results to improve CTF wall temperature resolution

- Implement Source term model (Wirth)
 - Next talk
Refactoring of MAMBA3D

• Goal
 – Refactor MAMBA to allow for easier coupling with CASL codes
 – Improve code quality by encapsulating data and increased local testing
 – Improve performance to reduce run time

• Refactor defines the interfaces that need to be called
 – Similar interfaces as MAMBA1D for ease of integration
 – Major difference is entire pin has one input instead of every surface
 – Several input parameters in MAMBA3D are moved into the code as defaults
 • These parameters can be overridden but does not require user to define

Significant effort to improve MAMBA
Updated MAMBA Code Layout

- Implemented Class data structures to better encapsulate data and allow for unit testing
- Three main classes based on physics and previous
 - Node class – contains dominant physics
 - Surface growth
 - Interior kinetics
 - Boiling rate
 - Calculating thermal coefficients
 - Radial class – contains mechanics to grow crud mesh, handles radial integration
 - Pin class – contains container for azimuthal and axial mesh, Location where 3D conduction solve would occur (current only 1D conduction)
Current Status and Timeline

• All major physics components have been refactored into the new infrastructure (except 3D conduction)
• API for input and output is mostly in place, still testing

• Next steps
 – Implement MAMBA3D API into CTF
 – Evaluate new MAMBA3D against experiments, calibrate as needed
 – Evaluate performance of VERA with MAMBA3D for core analysis
 – Evaluate accuracy of VERA with MAMBA3D for WB1C6-8
CFD Informed CTF to Provide Local Information

Wall Temperature (K) Around a Fuel Pin

- CFD
- 24 Azimuthal CTF Axial
- 12 Azimuthal CTF Axial
- CTF Mesh
Conclusion

• Previous work with MAMBA1D successfully demonstrated that modeling CIPS is feasible but requires tuning of MAMBA1D

• Current developments focus on improving
 – MAMBA3D
 – CTF boundary conditions provided to MAMBA
 – System mass balance for CRUD

• DOE Reportable Milestone - Complete and demonstrate improved VERA CRUD Induced Power Shift (CIPS) capabilities (8/17/2017)
Acknowledgements

• Jack Galloway, LANL
• David Andersson, LANL
• Kevin Claro, ORNL
• Brian Kendrik, LANL
• Topher Mathews, LANL
• Annalisa Manera, UM
• Bob Salko, ORNL
• Brian Wirth, UTk/ORNL
• Aaron Wysocki, ORNL
clarnokt@ornl.gov