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Heterogeneous Subsurface Deposnts
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Heterogeneity and Scaling in Vadose Zone

e Conductivity varies with water content

e Heterogeneity of adjacent sedimentary beds
— pore-scale interactions
— extent of vertical v. lateral infiltration

e Results in anisotropy (directionality) of flow

e Scale-dependent physical hydraulic
parameters (1)

e Influence on reactivity (R, K,)?
— mineralogical heterogeneities
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Up-scaling:
Case of alternating sand and silt layers
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Heterogeneity, Scaling, and Water

Content

Up-scaled conductivity
exhibits anisotropy
that is sensitive to:

e average capillary
pressure

e water content

e heterogeneity
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Evidence?

Jardine, Fendorf, and Mayes:
EMSP 1999-2005
Mayes and Jardine:
Tank Farm Vadose Zone Group,
QAK  CH2M Hill, Inc. 2004-present
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Intact Core Samples (25 x 25 cm)en

inferbedded sand/silt fine sand, clay laminations

clastic dike cross-bedded sandy loam laminated silt loam




Anisotropy and Water Content
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Anisotropy and Heterogeneity
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Anisotropy and U(VI) Mobility
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Heterogeneity, Water content,
Anisotropy, and Scaling

e Higher dispersivity when flow is parallel to
bedding

e Higher dispersivity at lower water content

e Higher dispersivity in heterogeneous
samples

e U(VI) more mobile with higher dispersivity
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New Research Goals

To provide validated scaling strategies
which can be applied to existing
contaminant distributions and migration
scenarios at Hanford and similar sites
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Research Questions

e Contribution of individual layers to bulk K(6) ?
e Contribution of individual layers to U(VI) transport?
e How are reactive mineral phases spatially arranged?

e Interaction of competing hydrological, geochemical,
and mineralogical processes in multi-layered
systems?

e Are measurements of hydraulics and reactivity of
individual layers sufficient to predict contaminant
transport in large heterogeneous systems of multiple
complex layers?
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Multi-Scale Experimental Strategy

1. Single Layers
2. Sedimentary Unit

e Previous data

e 1-D

e Flow parallel to beds (pb)
e Flow crosses beds (xb)

3. Multi-Layered System
e 2-D: pb and xb

i e

OAK
RIDGE

National Laboratory UT-BATTELLE




Objectives

1. Layer Scale: Separate quantification of hydraulic,
geochemical, and mineralogical factors influencing
U(VI) transport

2. Up Scale: Apply numerical, composite medium, and
fractal approaches to compute effective coupled
hydraulic and reactive transport parameters

3. Validate: Apply Up Scaled parameters to U(VI)
transport through progressively larger scales of
infact samples that encompass both lateral and
vertical U(VI) transport
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Layer Scale: Hydraulic Factors

POSTER
TONIGHT

Ultra Rock Core Centrifuge (URC): Transient flow
method for determining moisture retention properties

and predicting unsaturated hydraulic conductivity
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Layer Scale: Mineralogical Factors

Adsorbent/Adsorbant Speciation

e Element (U) mapping T Meapete S
e XANES
e EXAFS

e Mossbauer

e Raman
e Micro-focused XRD

Importance of Particle Size

e Sand, silt, clay mineral reactivity
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Layer Scale: Geochemical Factors
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Multi-Layered System

e Intact sample 2D/3D

— statistical distribution of
material properties

e Instrument individual
layers

—  solution samplers, matric
potential

e Transient application of
honreactive tracers, U(VI)

e Up-scaling approaches
applied to Layer-Scale
data

— is the whole a sum of parts?
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From Layer-Scale to Multi-Layer System

Can unsaturated flow in heterogeneous media be
described by “effective” upscaled properties?

e Apply humerical, composite medium, and fractal
approaches to Layer-scale data to compute effective
coupled hydraulic and reactive transport parameters

— HydroGeoChem (HGC) 5.0 (Yeh et al., 2004)

— Composite Medium Approach (COMA) (Pruess,
2004)

— Cantor Bar fractal model (Perfect et al.,
manuscript in preparation for special issue of VZJ)

e Compare with observed results in multi-layer system
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Up-scaling:
Case of alternating sand and silt layers

Water Saturation
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Up-scale: Example of COMA approach

Consider a soil composed of i=1,.. N material
types with volume fractions f; in randomly
distributed horizontal layers.

Objective: Predict average fluxes,
concentrations, efc. across multiple
layers

Composite capillary pressure-water content function:
N
ecomp(h) T Z 1:|‘9| (h)
i=1
Horizontal conductivity will upscale as a weighted arithmetic mean:

Ko comp (1) = D ., ()

Vertical conductivity will upscale as the harmonic mean:

1

KV comp (h) = N f
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Infiltration on line-source in layered soil with alternating layers
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Up-scale: Fractal Methods

e Cantor Bar fractal model (Perfect et al., in prep)

1/b = 1/3 iteration =0

n=1 i=1

AT AT A AT A A Ay >

q = Kypeat AN/AL = [L/T] -

Kinsat — K(h) — Layered system — Effective K — <K(h)>

OAK
RID GE

al Labor, UT-BATTELLE




Up-scale: Future Directions

e Incorporate up-scaled models into HGC
— Couple numerical model with parameter estimation code
— Up-scaling of dispersive and mass transfer processes
— Up-scaling of reaction processes for U(VI) reaction network

e Extend monofractal Cantor bar model (based on 2
contrasting media) to multifractal case (with many
contrasting media)

o Effects of heterogeneities within layers

e Statistical distribution of physical properties =
stochastic approaches?
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Anticipated Research Products

1. New insights into the nature of coupled
hydrological, mineralogical, and
geochemical processes in partially-
saturated, heterogeneously-layered
systems

2. Validated approaches for applying
aboratory-scale coupled reactive
transport parameters to progressively
arger and increasingly complex geologic
systems
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