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Geophysical Data
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1. Common DOE Characterization Approaches 
and Needs

2. Comparison with Petroleum Approaches



•The efficacy of in-situ remediation depends in part on the ability to 
•Understand the initial distribution of contaminants;
•Design treatments that bring amendments into contact with the 
distributed contaminants;
•Sustain the hydrogeochemical conditions favorable for the chosen 
treatment.

•These factors are largely governed by heterogeneity!

Importance of Heterogeneity to Remediation

Hydrogeological Heterogeneity              Geochemical Heterogeneity

Lovley, 
2001



Common Characterization Objectives and Approaches
Lithologic zonation
Hydrofacies
Hydraulic conductivity & porosity
Fast path delineation
Fracture zonation
Sediment and Aqueous Geochemistry
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Surface
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(G)

Airborne/Satellite
(G, H)

Acquisition approaches 
near this end of the 
chart provide
high resolution 
information over small 
spatial extents

Acquisition approaches 
near this end of the 
chart provide
low resolution 
information over large 
spatial extents

Wellbore 
Logging (G,H)

Crosshole 
measurements (G,H) 
and well tests (H)

Scales and 
Resolution of 

Geophysical (G) and 
Hydrological (H) 
Characterization 

Approaches



Advantages:
1. Minimally invasive
2. Greater spatial extents than conventional measurements
3. Measurements not as effected by borehole disturbances

Disadvantages:
1. Additional costs & expertise
2. Indirect
3. Volume averaged
4. Nonuniqueness

Subsurface Characterization 
using Geophysical Data
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Requirements……
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Key Components

Geophysical 
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Some Examples of Characterization and 
Monitoring at DOE Sites



Use of Surface Geophysics at the FRC
(Dave Watson)

Used to:
•Guide borehole sampling locations 
•Extrapolate borehole measurements
•Develop site-scale conceptual model

Surface Geophysics can be a Cost Effective 
Reconnaissance Tool !



Use of Surface Geophysics at the FRC
(Dave Watson)

Used to:
•Guide borehole sampling locations 
•Extrapolate borehole measurements
•Develop site-scale conceptual model

Surface Geophysics can be a Cost Effective 
Reconnaissance Tool !

Local-scale 
property estimation



Fracture 
Zonation 

Estimation using 
Tomographic 

Seismic Methods

Fracture geometry estimated using 
geophysical data explains spatial 

variation of tracer breakthrough and 
U bioreduction

Chen et al., Estimation of Fracture Zonation using Geophysical data, WRR, 2005

Area 3

Breakthrough data: from Tonia Mehlhorn and Phil Jardine



Geochemical-Lithological Parameter Estimation using Radar Tomographic Data

Estimated Fe2

Estimated Fe3Estimated Lithology

Radar Attenuation

0m

6m

low

low

high

highPeat and clay                     sand and 
muddy sand

0m                                                      12m

Log (Fe(II),micromole/cc)

Log (Fe(III), micromole/cc)

D1                             D2 D3
Chen, Hubbard, Murray, Rodin, and Majer, WRR, 2005



Correlated physical and 
geochemical heterogeneity 
obtained using tomographic 
estimates (Chen et al., 2005)

Use of Geophysics for Parameterizing 
Numerical Flow and Transport Models - MOVIE

Acetate                                     Aqueous Fe(II)

Adsorbed Bugs                        Adsorbed U(VI)

Lithology     K

Higher K

Lower K

Higher Fe(III)

Fe(III)
•Simulation of U(VI) loading over 22 years;
•2D Simulation of biostimulation via acetate injection in   

presence of FeRB for 200 days (Scheibe et al., 2006)

Role of heterogeneity on contaminant distribution and remedial processes



High KStimulation 
Zone

K 
Estimation

3 DAYS

30 DAYS

Groundwater Flow

Pump

Lower K

42’

45’

42’

45’

42’

45’

Use of Geophysics for Guiding and Monitoring 
Remediation

Hanford 100H Site (Hazen)

Characterization  
performed using 

tomographic and wellbore 
flowmeter data

Monitoring of post-
stimulation amendment 

distribution and 
transformations

Heterogeneity influences 
distribution of Amendment and 

System Transformations



Use of Geophysical Data for Monitoring Geochemical 
Conditions needed for Sustained Remediation

(Rifle, CO Site)

Acetate addition for facilitating microbial reduction of U(VI) to U(IV);
Field results illustrate the importance of maintaining poised redox 
conditions (Phil Long)

Modified from Chapelle, 2002



Use of Geophysical Signatures for indicating Fe vs. Sulfate 
Reducing Conditions
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Typical DOE Geophysical Characterization 
Attributes

Integration at local scale performed in conjunction 
with some research projects;
Integration across larger field-scales seldom 
performed (except as ‘two step’ procedure)
Specific characterization goals based on project 
objectives;
Need to characterize biogeochemical heterogeneity 
as well as hydrogeological heterogeneity;
Limited budgets;
Not routinely performed or incorporated as first step 
in planning………



In Situ Redox Manipulation PRBs to 
reduce Cr(VI) – A Comparison

Frontier Hard Chrome Superfund Site, 
Vancouver, WA. 

• Characterization and modeling used to 
guide ISRM design.

• Successful, performed within budget.

ISRM Hanford 100D Barrier 1999-2003 
($10 Million)

• Little pre-injection characterization;
• Estimated longevity of  barrier based 

on bench tests >20 years;
• Cr breakthroughs detected within few 

years;
• Failure attributed to heterogeneity;
• Several characterization and ‘mending’

projects are in progress or planned.

Pre-Treatment Characterization 
and monitoring can reduce 

closure and LTS costs!!!
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CRITICAL QUESTIONS

What properties/features must be 
characterized to capture the behavior of a 

system under particular environmental 
conditions, treatments, and length/time 

scales?

Which method (or combinations of methods) 
yield the desired accuracy, cost-efficiency, 
resolution, and spatial extent given for the 

problem?

How can we address these questions?



#1 Perform More ‘Routine’ Characterization!

Include characterization in initial planning/budget 
steps;
Improve communication between disciplines;
Drill sufficient and ‘deep enough’ boreholes; 
collect enough coincident direct and indirect 
measurements to enable calibration/validation;
Improve routine data integration;
Iterate between characterization and modeling.



Relative Characteristic Length Scales (m)

10-6  10-4 1                       10            103+

#2 Perform More Nested 
Scale Studies 
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approach



#3 Improve our ability to remotely characterize and 
Monitor Biogeochemical properties

Some work in progress but we are at an early stage;
Included in ERSD strategic plan:

‘high resolution geophysical methods for measuring 
biogeochemical and hydrological responses to in situ 
manipulations of the subsurface’,  

‘innovative methods for rapid assessment of changes in 
microbial community composition and metabolic potential’, 

‘integrated experimental approaches to describe coupling of 
biological, chemical and hydrological processes at field-
relevant spatial scales



#4 Perform Synthesis Across Sites and Develop Databases!

Characterization 
& monitoring
100H
Hubbard et al. 
2006

Leak
Detection
Mock Tank
Majer et al. 2004Plume Delineation

T-Tank Farms
hydroGEOPHYSICS

K Estimation 
Sisson&Lu

Kowalsky et al., 2006

Barriers Characterization
100D

Szecsody et al., 2005
300 Area
Characterization
Versteeg & Ward



Consensus from 2005 Field-Scale Break Out Session:
What are the greatest challenges/gaps for DOE field-

scale research?
MEASUREMENTS

Identification of critical Macroscale properties at the field scale, and 
understanding of how they relate to lab scale measurements and 
rates;
How to optimally characterize field-scale reaction rates;
How to best measure extremes: flow conditions, level of 
contamination, aging?

PROCESSES and SCALE
Fundamental relations among variables that are relevant to field 
scale processes;
Effective integration of information base, process models, 
characterization data, predictive models and validation across scales;

FUNDING to permit comprehensive, integrated, and longer term field 
investigations.



Geophysical methods can be useful for remediation research 
and stewardship:

Guiding the site choice and experimental design;
Parameterizing numerical models;
Monitoring remediation treatments;
Interpreting experimental results;
Understanding role of heterogeneity on treatment.

Sufficient budgets and research advances are needed to facilitate 
routine, multi-scale characterization;

ERSP is currently a key sponsor of the development of 
characterization approaches for near surface systems;

What can we learn from Petroleum Industry Characterization 
Approaches?

Summary
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