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Uranium contamination is widespread in subsurface sediments at nuclear weapons
production sites across the United States and Eastern Europe. Due to the uranium extraction
process, waste disposal practices and varying groundwater flow patterns, sediments range from
neutral to acidic pH and are co-contaminated with variable concentrations of nitrate. Current
bioremediation strategies attempt to stimulate indigenous metal-reducing r
communities through substrate addition to effectively immobilize uranium in the contaminated
subsurface. However, the diversity of active microbial groups prior to and after substrate
addition is currently unknown. The objective of this study was to characterize the
metabolically-active fraction of the i situ microbial community across vertical depth and
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‘geochemical gradients to provide an initial point of reference for
of bioremediation practices on functional diversity. A cultivation-independent approach
targeting SSU rRNA sequences was used to compare the in situ microbial communities within
acidic (pH 3-4) and near neutral pH (pH 6-7) zones of contaminated subsurface sediments
collected from a single bore hole (FB61) at the US DOE Field Research Center (FRC), Oak
Ridge, TN. Samples were collected from four sediment depths (2.1 - 4.6 m below surface),
where a large gradient in nitrate concentration was observed along with sediment pH. A total
of 8 clone libraries were constructed from amplified bacterial SSU rRNA genes (DNA-
derived) and cDNA reverse transcribed from SSU rRNA (RNA-derived). Clones were
scrcenced using restriction fragment length polymorphism analysis, followed by sequencing of
cloned inserts. Clone sequences were most related to the phyla

(classes ., B, 8, and y), Bacteroides, and Firmicutes. The diversity and numerical dominance
of phylotypes varied between the DNA- and RNA-derived libraries. The most abundant
phylotypes found in the DNA-derived libraries were members of the class
Alphaproteobacteria, while sequences related to the class Gammaproteobacteria were more
frequently detected in the RNA-derived libraries. Each library was statistically unique,
however libraries constructed from similar pH sediments were the most similar, suggesting pH
has a higher selective pressure on the active and total microbial community than other
‘geochemical parameters studied (uranium, iron, or nitrate). Through identification of the
metabolically-active members of mirobial communitics, our results point to microbial groups
which may have a higher otential in the
Our improved approach and extensive sequence database further provide the foundation for
determination of the response of metal-reducers and other heterotrophic groups to
biostimulation in the field and in sediment microcosms.

‘The U.S. Department of Energy (DOE) has established the Natural and Accelerated
Bioremediation Research (NABIR) Program in order to develop cost-effective bioremediation
strategies for the decontamination of metal-radionuclide wastes. NABIR
bioremediation studies at the Field Rescarch Center (FRC) located at the Y-12 complex near
the Oak Ridge National Laboratory, Oak Ridge, TN (Figure 14). Similar to many other DOE.
sites across the U.S., the FRC site is co-contaminated with U(VI) and nitric acid. U(IV) is
highly soluble in groundwater but can be reduced by both chemical and biological processes to
an insoluble state, i.¢., U(IV),

Current bioremediation strategics are focused on stimulating metal-reducing microbial
communities which can mediate the reduction of U(VI) to U(IV). Such communities have
been stimulated by carbon substrate addition and pH neutralization in both in situ and
microcosm studies (Petric et al., 2003; North et al., 2004). Because nitrate is a competing
electron acceptor for metal-reducing bacteria, nitrate must be depleted prior to the onset of
metal reduction (Finneran et al., 2002; Senko et al.,

The bioremediation potential of a selceted site s subjeet to the diversity and metabolic state
of capable of catalyzing
respond to both geochemical concentrations and ecological interactions between microbial
populations. Thus, an understanding of the structure and functional

TABLE 2: Diversity and distribution of SSU rRNA gene clones (DNA-derived) from borehole FB61.
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* Sediment samples were collected from the Area | experimental plot at the Field Research Center (FRC) (Figure 1B), 61-01-00 610124 61-03-00 61-03-25
+ A GeoProbe was used to sample subsurface sediments of borehole FB61 and sub-sampled under anoxic conditions. - .
« Sub-samples from cach depth interval were frozen at -80°C until nucleic acid extraction. DNA ¥ ammy T s 17
* Samples were chosen for molecular analysis based on their geochemical characteristics (Table 1), ey
robial * Total nucleic acids were extracted from sediments using the method of Hurt et al. 2001. ™ 0%
+ Clone libraries were constructed from PCR amplified 165 rRNA products. |
* Clones were screened using restriction fragment length polymorphism analysis (RFLP) and unique clones were [
sequenced. B e o £l =
+ Representative clones from the resulting phylotypes were sequenced for phylogenetic analys
of the impacts.
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'Units in pmol ! 2Units in pmol g'! d"!, data reported in Petrie et al. in review. *Not determined. u m B Unclassified

FIGURE 4: Frequency of bacterial phylogenetic lineages detected in SSU rRNA clone libraries from acidic
and neutral pH sediment of borehole FB61. Calculations based on the total number of clones associated with
a sequenced phylotype.

TABLE 3: Diversity and distribution of SSU rRNA clones (RNA-derived) from borehole FB61.
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FIGURE 5: Rarefaction curves for the number of unique OTUs versus the number of clones sampled from (A) DNA-derived
and (B) RNA-derived clone libraries. OTUs were defined as different RFLP patterns resulting from digestion of clones with the
restriction endonucleases Haelll and Mspl.

TABLE 4: Characteristics and diversity estimates for SSU rRNA clones from FB61 sediment samples.

Tagt Prmerset Samples NO-OT r Species  Shamon- T Fercant i Nucleotide  Gene
Clones Richness  Weiner' Coverage* Diversity’ _Diversity”
DNA  27F/1392R  61-01-00 90 20 2902256 900 1728:827 0155007 0764004
61-01-24 7720 27(22,49) 219 472 883 1674803 014007 0794005
61-03-00 62 1 21013,63) 186 525 919 1723:829  015£007 081+003
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1 Operational taxonomic units based on RFLP analysis. 2 Shannon-Weiner Index, higher number represents. h\gher diversity.

3 Simpson's Reciprocal Index, higher number represents higher diversity. “Percent Coverage, calculated from the following: C = [1-(n1/N)]x100.
5 (n), average sequence divergence calculated from the number of nucleotide differences benveen two |andom sequence from a population.

©Nucleatide diversity, higher number indicates higher divergence of sequences. 7 Gene diversity. higher number indicates higher divergence of sequences
* The numbers in parenthesis are 95% confidence intervals #Mean + standard deviation.

FIGURE 6: Representative microbial community diversity patterns and evenness based on OTU abundance in depth intervals
of borehole FB61. Evenness is presented in boxes; as the value approaches 1 the population is more evenly distributed.

communities across geochemical gradients is critical for the design of successful metal-
radionuclide bioremediation strategies.

FIGURE 1: Map showing the location of the NABIR Field Research Center (FRC)
at Oak Ridge National Laboratory, Oak Ridge, TN (A) and the location of the Arca |
study site (B). Sediment cores used in this study were extracted from bore hole FB61
C

(A),

* Characterize the microbial community within Area 1 borehole FB61 using cloning
and sequencing techniques targeting the SSU rRNA.

* Determine variations in microbial community structure (i.c. diversity and
phylogenetic composition) with depth and across geochemical gradients within
borehole FBG61.

+ Compare the total bacterial community (SSU rRNA gene-derived) to the
metabolically-active fraction (SSU rRNA-derived) within acidic and neutral pH
sediments of borehole FB61.
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FIGURE hylogenetic tree of non-Proteobacteria-related clone sequences from FB61 sediment samples

and selected related cultured isolates and environmental clones. Phylotypes specific to acidic pH sediment are

red, neutral pH sediments are blue, and both are green. RNA-derived clones begin with “R” or “RR™.
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FIGURE 7: Dendrogram of LIBSHUFF comparative analysis of sequences fmm DNA-derived and RNA-derived clone
libraries for each depth interval of FB61. The dendrogram was calculated from a matrix of 5Cyy values with the lowest p-value.
The x-axis is a correlation measure based on distance between 3Cyy.

CONCLUSIONS

« Differences in taxa distribution and diversity at the phylotype level were observed between DNA- and RNA-derived clone
libraries from acidic and neutral pH sediment and across various environmental parameters, such as nitrate and iron
concentrations.

~ Statistical analysis indicated slightly higher diversity in neutral sediment clone libraries compared to acidic pH sediments libraries.
~ RNA-derived clone libraries contained fewer taxa compared to the DNA-derived clone libraries. Interestingly, the taxa distribution,
numerically dominated by Firmicutes Beta- and Gammaproteobacteria, was similar to the acidic pH derived DNA clone libraries.

Numerous phylotypes had high sequence similarity to cultured organisms capable of nitrate reduction and clones from other

FRC studies of groundwater and sediments microbial communities (Yan et al. 2003; North et al. 2004; Palumbo et al. 2004;

Reardon et al. 2004; Fields et al. 2005).

~ These results together with cultivation studies indicate that the Beta- and
‘microbial groups to target during biostimulation experiments.

active

are important

LIBSHUFF and co-ancestry (data not shown) analysis indicated sequences obtained from the acidic pH sediments were
more closely related to cach other than sequences obtained from neutral pH sediments, suggesting a common selective
pressure within these two sediment types. Interestingly, DNA- and RNA-derived clone sequences from similar sites were
not closely related, hi variances in between these two clone targets.

Building on these data collected from unstimulated sediments, we are currently characterizing the metabolically active
fraction of the microbial community associated with the biostimulation of nitrate reduction and metal reduction in Area 1
sediment microcosms.
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FIGURE 3: Phylogenetic tree m Prclecbaclerla related clone sequences from FB61 sediment samples and
selected related cultured isolates and environmental clones. Phylotypes specific to acidic pH sediment are red.
neutral pH sediments are blue, and both are green. RNA-derived clones begin with “R” or “1
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