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Reaction kinetics include:

•Aquatic equilibrium geochemistry

•Uranium sorption/desoprtion (Surface-
Complexation Model)

•Kinetic mass transfer

•Denitrification, sulfate reduction, and U(VI) 
reduction

Model implementation:

•Travel-time domain by PhreeqC and MATLAB

•Aqueous speciation: Grenthe et al. (1992), 
calcium-uranyl-carbonate complexes and Wateq4f

•Surface chemistry: Dzombak and Morel (1990) 
and Waite et al. (1994)

Parameters to be determined:

•Effective reduction rate of U(VI)

•Sorption site distribution
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Model I: FirstModel I: First--order modelorder model

Model II: Nonlinear reaction modelModel II: Nonlinear reaction model
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ConclusionsConclusions
•Effective electron-donor consumption rate: 0.1/hr;

•Effective U(VI) reduction rate: 1mmol/mgSRB-day;

•U(VI) sorption/desorption is kinetically controlled, and 
highly influenced by pH and bicarbonate levels which vary 
during the bioreduction experiment.

•Inhibition by nitrate was absent due to complete removal 
and impact of calcium on reduction rate may be present, 
which may strongly influence the level of bioavailable U(VI) 
species.

Introduction
A reactive-transport model is developed based on travel-time 
discretization to simulate an in-situ bioremediation experiment for 
demonstrating enhanced bioreduction of uranium(VI) at Oak Ridge, 
TN. Breakthrough curves of a conservative tracer are used to derive 
the space to travel-time transformation from the injection well to the 
observation points. Reactive transport is solved numerically in time 
and travel-time coordinates. Breakthrough curves of reactive 
components are obtained by weighting the solutions of the reactive 
transport model with the travel-time distributions. By assuming linear 
transport systems, we estimate the first-order consumption rates of 
injected electron donor at both observation and extraction wells. By 
considering nonlinear reaction kinetics, the breakthrough curves of 
major components are estimated at the observation point.
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