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Introduction

\ reactive-transport model is developed based on travel-time
liscretization to simulate an in-situ bioremediation experiment for
lemonstrating enhanced bioreduction of uranium(VI) at Oak Ridge,
'N. Breakthrough curves of a conservative tracer are used to derive
he space to travel-time transformation from the injection well to the
)bservation points. Reactive transport is solved numerically in time
and travel-time coordinates. Breakthrough curves of reactive
“omponents are obtained by weighting the solutions of the reactive
ransport model with the travel-time distributions. By assuming linear
ransport systems, we estimate the first-order consumption rates of
njected electron donor at both observation and extraction wells. By
onsidering nonlinear reaction kinetics, the breakthrough curves of
najor components are estimated at the observation point.
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Model I: First-order model

To approximate first-order electron donor
consumption rates; Linear system
assumption; Method of transfer function
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Model II: Nonlinear reaction model
Reaction kinetics include:
*Aquatic equilibrium geochemistry

eUranium sorption/desoprtion (Surface-
Complexation Model)

*Kinetic mass transfer

«Denitrification, sulfate reduction, and U(VI)
reduction

Model implementation:
*Travel-time domain by PhreeqC and MATLAB

*Aqueous speciation: Grenthe et al. (1992),
calcium-uranyl-carbonate complexes and Wateq4f

*Surface chemistry: Dzombak and Morel (1990)
and Waite et al. (1994)

Parameters to be determined:
Effective reduction rate of U(VI)

eSorption site distribution

Concentration Breakthrough Curves at
FW101-2

Aqueous U(VI) Species and Fraction
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Conclusions

«Effective electron-donor consumption rate: 0.1/hr;
«Effective U(VI) reduction rate: Immol/mgSRB-day;

*U(VI) sorption/desorption is kinetically controlled, and
highly influenced by pH and bicarbonate levels which va
during the bioreduction experiment.

«Inhibition by nitrate was absent due to complete remove
and impact of calcium on reduction rate may be present,
which may strongly influence the level of bioavailable U(
species.
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