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Introduction

Tower CO2 flux measurements can suffer interruptions from a number of

causes:

• Power failures

• Sensor failures

• Rainfall (which can affect:)

– open-path CO2 analyzers

– sonic anemometers

Persistent rainfall can be a problem for flux measurements in several

regions of the world.
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Closed-path and open-path IRGAs in wet conditions

DF49 (British Columbia)
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The aerodynamic-variance method

Standard Eddy-Covariance (EC) instrumentation for CO2 fluxes includes

the measurement of U , V , W , Θv and C.

Reynolds decomposition: A = A + a

Coordinate rotation: V = W = 0.

Assume that we have an alternative set of measurements:

Propeller anemometer Uβ → Uβ

Closed-Path IRGA Cβ → σc

Fast-response thermometer Θ → σθ
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Algorithm: iterate until convergence

u∗ =
κ Uβ

ln
(

z−d
z0τ

)
−Ψτ(ζ, ζ0)

,

σa

a∗
= φa(ζ),

ζ = −κg(z − d)θ∗
Θu2

∗
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Algorithm: iterate until convergence

u∗ =
κ Uβ

ln
(

z−d
z0τ

)
−Ψτ(ζ, ζ0)

,

σa

a∗
= φa(ζ),

ζ = −κg(z − d)θ∗
Θu2

∗

• Essentially simple ideas that work well in the Surface Layer

• Problem: measurements are being made well within the Roughness

Sublayer.
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Site and data description

• DF49: a mature stand of Douglas Fir in the British Columbia

• z = 43m, h = 33m; d = 22m (assumed based on d = 2h/3)

• EC: Gill Solent R2 and Licor LI-6262

• β: Young propeller anemometer

• Site is very homogeneous, no significant directional effects found by

Humphreys et al. (2006).
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Similarity functions in the roughness sublayer

Ψτ = (C ln((0.28 + (−ζ)3/4)/(0.28 + (−ζ0)3/4))−

D((−ζ)1/3 − (−ζ0)1/3)),

φa(ζ) = A(1 + B|ζ|)−1/3
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Similarity functions in the roughness sublayer

Ψτ = (C ln((0.28 + (−ζ)3/4)/(0.28 + (−ζ0)3/4))−

D((−ζ)1/3 − (−ζ0)1/3)),

φa(ζ) = A(1 + B|ζ|)−1/3

• Ψτ “works”at the cost of locally calibrating C and D.

• φa doesn’t work
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Performance of similarity functions: Ψτ
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Performance of similarity functions: φa
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Classify φθ according to θ∗: 0.0–0.1, 0.1–0.2, 0.2–0.3 and > 0.3 m s−1
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φa parameter estimation per class of a∗

(Using Gnuplot’s Levenberg-Marquardt non-linear least squares)

Table 1: A and B for each θ∗ and c∗ class
|θ∗| A B |c∗| A B

K µmol mol−1

0.0 – 0.1 87.82 24121 0.00 – 0.30 5.50 0.00

0.1 – 0.2 2.24 1.37 0.30 – 0.60 2.16 9.50

0.3 – 0.3 2.12 2.31 0.60 – 0.90 1.81 0.65

0.3 – 2.13 5.31 0.90 – 1.79 1.67
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u∗ estimates
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Scalar fluxes
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CO2 flux in rainy conditions
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Error statistics

Table 2: Aerodynamic-variance model evaluation of the form y = ax, for

u∗, H , F and F in rainy periods. sa is the standard deviation of the

a-estimate; r2 is the coefficient of determination, and sy is the standard

error of estimate of y; n is sample size.
Flux a sa r2 sy n

u∗ 0.968 0.014 0.806 0.10 m s−1 836

H 0.975 0.021 0.776 53 W m−2 836

F 0.782 0.013 0.450 4.31 µmol mol−1 836

F (rain) 0.672 0.058 0.816 2.34 µmol mol−1 45
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Conclusions

• Good u∗ estimates, in spite of surface-layer parameterization.

• Reasonably good and unbiased H estimates (need to improve both over-

and underestimates).

• Well correlated, but biased, F estimates.

• Need to investigate if, and how, rain increases the bias in the estimated

F .
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Thank you.


