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Motivation

Variability in carbon and water fluxes varies

at scales ranging from fractions of seconds

to decades.

Long-term variation in these fluxes is also

compounded by non-stationary shifts in

ecophysiological and ecological attributes.

Sampling fluxes is often “infected” with

large gaps (~30 % of times).



Problem:

How can we assess the “critical” scales

of flux variability and their relationship

to environmental variables?



Approach

• Gap Filling Strategies – Falge et al. (2001)

 The choice of the strategy is subjective

 Some strategies “inject” artificial

correlations between environmental drivers

and fluxes.

There is a need for synergistic approaches

that complement and independently

assess gap-filling strategies.



Approach:

We propose multi-resolution analysis to

“complement” and “diagnose” gap-filling

strategies – not substitute them.

Multi-resolution methods offer independent

assessment of the variability in the “flux

data” in time-scale “bands” without

resorting to subjective gap-filling.

Multi-resolution methods use orthonormal

wavelets which can unfold a given time

series into time and frequency domains.



SYNTHETIC EXAMPLE



EFFECT OF GAPS:
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LIMITATIONS

Qui, Paw U, and Shaw (1995) - JGR:

• Limited scale resolution means that

variability (or energy) at a precise

frequency cannot be resolve.

• Nonlocality of the wavelet in the frequency

domain  “Energy leakage”.



APPLICATIONS

CASE STUDY:

DUKE AMERIFLUX PINE FOREST

Sample flux time series collected above the

Duke Forest AmeriFlux site along with soil

moisture and net energy.



FOR SPECTRAL COMPARISONS – ALL

VARIABLES ARE NORMALIZED.



CO-SPECTRA: ALL VARIABLES ARE

NORMALIZED SO THAT AREA IS

UNITY.
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Conclusions:

• Orthonormal wavelet transformation

provides a robust framework for analyzing

the spectral and cospectral properties of

long-term flux records that exhibit:

1) frequency shifts in time, and

2) multiple gaps or missing data.

• The wavelet spectra of the three land

surface fluxes (carbon, water, and heat)

demonstrated that the largest variability

occurs at seasonal time scales.



Broader Implications:

Current use of remotely sensed data to infer

land-surface fluxes benefits from this

analysis in two ways:

• It identifies the time scales at which the

remotely sensed observations are most

correlated with the fluxes and hence the

time scales at which remotely sensed

observations must be resolved.

• It identifies the level of predictability that

simple models can offer given the

observed degree of spectral correlation.
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